Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Arbuscular Mycorrhizal Fungi Improve Drought Tolerance of Quinoa Grown in Compost-Amended Soils by Altering Primary and Secondary Metabolite Levels

    Wissal Benaffari1,2,3, Fatima-Ezzahra Soussani1,2,4, Abderrahim Boutasknit1,2,5, Salma Toubali1,2,3, Abir Ben Hassine3, Hala Ben Ahmed3, Rachid Lahlali7,*, Abdelilah Meddich1,2,6,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2285-2302, 2024, DOI:10.32604/phyton.2024.055052 - 30 September 2024

    Abstract Quinoa (Chenopodium quinoa) has recently gained popularity as a pseudo-cereal cultivated in various countries due to the nutritional and antioxidant benefits of its seeds, and its capacity to persist in water-stressed environments. Our study aimed to assess the effects of native arbuscular mycorrhizal fungi (AMF) and local organic amendments on the metabolic responses and antioxidant activity of quinoa seeds under water-stressed conditions. To this end, quinoa plants were grown in soils inoculated with an indigenous mycorrhizal consortium AMF and amended with two types of compost from horse manure (HM) and green waste (GW) under two water… More >

  • Open Access

    ARTICLE

    Drought Stress Alleviation in Chenopodium quinoa through Synergistic Effect of Silicon and Molybdenum via Triggering of SNF1-Associated Protein Kinase 2 Signaling Mechanism

    Asmat Askar1,#, Humaira Gul1,#, Mamoona Rauf1, Muhammad Arif2, Bokyung Lee3, Sajid Ali4,*, Abdulwahed Fahad Alrefaei5, Mikhlid H. Almutairi5, Zahid Ali Butt6, Ho-Youn Kim7, Muhammad Hamayun1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2455-2478, 2024, DOI:10.32604/phyton.2024.054508 - 30 September 2024

    Abstract Drought stress negatively impacts agricultural crop yields. By using mineral fertilizers and chemical regulators to encourage plant development and growth, its impact can be mitigated. The current study revealed that exogenous silicon (Si) (potassium silicate; K2Si2O5 at 1000 ppm) and molybdenum (Mo) (ammonium molybdate; (NH4)6Mo7O24•4H2O at 100 ppm) improved drought tolerance in quinoa (Chenopodium quinoa Willd). The research was conducted in a randomized complete block design with three biological replicates. The treatments comprised T0 (control, water spray), T4 (drought stress), and T1, T2, T3, T5, T6, and T7, i.e., foliar applications of silicon and molybdenum solutions individually… More >

  • Open Access

    ARTICLE

    Evaluation of Pre-Harvest Sprouting (PHS) Resistance and Screening of High-Quality Varieties from Thirty-Seven Quinoa (Chenopodium quinoa Willd.) Resources in Chengdu Plain

    Xin Pan, Ya Gao, Fang Zeng, Chunmei Zheng, Wenxuan Ge, Yan Wan, Yanxia Sun, Xiaoyong Wu*

    Phyton-International Journal of Experimental Botany, Vol.92, No.10, pp. 2921-2936, 2023, DOI:10.32604/phyton.2023.029853 - 15 September 2023

    Abstract Pre-harvest sprouting (PHS) will have a serious effect both on the yield and quality of quinoa (Chenopodium quinoa Willd.). It is crucial to select and breed quinoa varieties with PHS resistance and excellent agronomic traits for guidance production and utilization of quinoa. A comprehensive evaluation of the PHS resistance and agronomic traits of 37 species of quinoa resources was conducted in Chengdu Plain. The evaluation used various methods, including grain germination rate (GR), grain germination index (GI), total spike germination rate (SR), total grain germination index (SI), grey correlation analysis (GCA), cluster analysis and correlation analysis.… More >

  • Open Access

    ARTICLE

    Physiological and Biochemical Characteristics and Response Patterns of Salinity Stress Responsive Genes (SSRGs) in Wild Quinoa (Chenopodium quinoa L.)

    Yurong Jiang1, Muhammad Yasir1, Yuefen Cao1, Lejia Hu1, Tongli Yan1, Shuijin Zhu2,*, Guoquan Lu1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 399-410, 2023, DOI:10.32604/phyton.2022.022742 - 12 October 2022

    Abstract Cultivating salt-tolerant crops is a feasible way to effectively utilize saline-alkali land and solve the problem of underutilization of saline soils. Quinoa, a protein-comprehensive cereal in the plant kingdom, is an exceptional crop in terms of salt stress tolerance level. It seems an excellent model for the exploration of salt-tolerance mechanisms and cultivation of salt-tolerant germplasms. In this study, the seeds and seedlings of the quinoa cultivar Shelly were treated with different concentrations of NaCl solution. The physiological, biochemical characteristics and agronomic traits were investigated, and the response patterns of three salt stress-responsive genes (SSRGs)… More >

Displaying 1-10 on page 1 of 4. Per Page