E. Pan1,2, Y. Zhang2, P. W. Chung3, M. Denda4
CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 157-168, 2008, DOI:10.3970/cmes.2008.024.157
Abstract Quantum-dot (QD) semiconductor synthesis is one of the most actively investigated fields in strain energy band engineering. The induced strain fields influence ordering and alignment, and the subsequent surface formations determine the energy bandgap of the device. The effect of the strains on the surface formations is computationally expensive to simulate, thus analytical solutions to the QD-induced strain fields are very appealing and useful. In this paper we present an analytical method for calculating the QD-induced elastic field in anisotropic half-space semiconductor substrates. The QD is assumed to be of any polyhedral shape, and its… More >