Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (169)
  • Open Access

    ARTICLE

    A Post-Quantum Cross-Domain Authentication Scheme Based on Multi-Chain Architecture

    Yi-Bo Cao1,*, Xiu-Bo Chen1, Yun-Feng He2, Lu-Xi Liu2, Yin-Mei Che2, Xiao Wang2, Ke Xiao3, Gang Xu3, Si-Yi Chen1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2813-2827, 2024, DOI:10.32604/cmc.2024.046816

    Abstract Due to the rapid advancements in network technology, blockchain is being employed for distributed data storage. In the Internet of Things (IoT) scenario, different participants manage multiple blockchains located in different trust domains, which has resulted in the extensive development of cross-domain authentication techniques. However, the emergence of many attackers equipped with quantum computers has the potential to launch quantum computing attacks against cross-domain authentication schemes based on traditional cryptography, posing a significant security threat. In response to the aforementioned challenges, our paper demonstrates a post-quantum cross-domain identity authentication scheme to negotiate the session key used in the cross-chain asset… More >

  • Open Access

    ARTICLE

    Enhancing IoT Security: Quantum-Level Resilience against Threats

    Hosam Alhakami*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 329-356, 2024, DOI:10.32604/cmc.2023.043439

    Abstract The rapid growth of the Internet of Things (IoT) operations has necessitated the incorporation of quantum computing technologies to meet its expanding needs. This integration is motivated by the need to solve the specific issues provided by the expansion of IoT and the potential benefits that quantum computing can offer in this scenario. The combination of IoT and quantum computing creates new privacy and security problems. This study examines the critical need to prevent potential security concerns from quantum computing in IoT applications. We investigate the incorporation of quantum computing approaches within IoT security frameworks, with a focus on developing… More >

  • Open Access

    ARTICLE

    3-Qubit Circular Quantum Convolution Computation Using the Fourier Transform with Illustrative Examples

    Artyom M. Grigoryan1,*, Sos S. Agaian2

    Journal of Quantum Computing, Vol.6, pp. 1-14, 2024, DOI:10.32604/jqc.2023.026981

    Abstract In this work, we describe a method of calculation of the 1-D circular quantum convolution of signals represented by 3-qubit superpositions in the computational basis states. The examples of the ideal low pass and high pass filters are described and quantum schemes for the 3-qubit circular convolution are presented. In the proposed method, the 3-qubit Fourier transform is used and one addition qubit, to prepare the quantum superposition for the inverse quantum Fourier transform. It is considered that the discrete Fourier transform of one of the signals is known and calculated in advance and only the quantum Fourier transform of… More >

  • Open Access

    ARTICLE

    A Protocol for Conversion of Path-Spin to Spin-Spin Quantum Entanglement

    Indranil Bayal1, Pradipta Panchadhyayee1,2,*

    Journal of Quantum Computing, Vol.5, pp. 71-79, 2023, DOI:10.32604/jqc.2023.045164

    Abstract The present model deals with a protocol which involves the generation and conversion of entanglement from path-spin (P-S) hybrid entanglement associated with half-spin particle to spin-spin (S-S) interparticle entanglement. This protocol finds its applications in quantum information processing via a series of operations which include a beam splitter, spin flipper, spin measurement, classical channel, unitary transformations. Finally, it leads to two particles having completely entangled spin variables, without any requirement of any simultaneous operation on the two particles. More >

  • Open Access

    ARTICLE

    Comparison among Classical, Probabilistic and Quantum Algorithms for Hamiltonian Cycle Problem

    Giuseppe Corrente1,2,*, Carlo Vincenzo Stanzione3,4, Vittoria Stanzione5

    Journal of Quantum Computing, Vol.5, pp. 55-70, 2023, DOI:10.32604/jqc.2023.044786

    Abstract The Hamiltonian cycle problem (HCP), which is an NP-complete problem, consists of having a graph G with nodes and m edges and finding the path that connects each node exactly once. In this paper we compare some algorithms to solve a Hamiltonian cycle problem, using different models of computations and especially the probabilistic and quantum ones. Starting from the classical probabilistic approach of random walks, we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine (QTM), which can be a useful conceptual project tool for quantum algorithms. Introducing several constraints to the graphs,… More >

  • Open Access

    ARTICLE

    Design and Implementation of Quantum Repeaters: Insights on Quantum Entanglement Purification

    Karoki A. Mũgambi*, Geoffrey O. Okeng’o

    Journal of Quantum Computing, Vol.5, pp. 25-40, 2023, DOI:10.32604/jqc.2023.045654

    Abstract Quantum communication is a groundbreaking technology that is driving the future of information transmission and communication technologies to a new paradigm. It relies on quantum entanglement to facilitate the transmission of quantum states between parties. Quantum repeaters are crucial for facilitating long-distance quantum communication. These quantum devices act as intermediaries between adjacent communication channel segments within a fragmented quantum network, allowing for entanglement swapping between the channel segments. This entanglement swapping process establishes entanglement links between the endpoints of adjacent segments, gradually creating a continuous entanglement connection over the entire length of the transmission channel. The established quantum link can… More >

  • Open Access

    ARTICLE

    Effects of T-Factor on Quantum Annealing Algorithms for Integer Factoring Problem

    Zhiqi Liu1, Shihui Zheng1, Xingyu Yan1, Ping Pan1,2, Licheng Wang1,3,*

    Journal of Quantum Computing, Vol.5, pp. 41-54, 2023, DOI:10.32604/jqc.2023.045572

    Abstract The hardness of the integer factoring problem (IFP) plays a core role in the security of RSA-like cryptosystems that are widely used today. Besides Shor’s quantum algorithm that can solve IFP within polynomial time, quantum annealing algorithms (QAA) also manifest certain advantages in factoring integers. In experimental aspects, the reported integers that were successfully factored by using the D-wave QAA platform are much larger than those being factored by using Shor-like quantum algorithms. In this paper, we report some interesting observations about the effects of QAA for solving IFP. More specifically, we introduce a metric, called T-factor that measures the… More >

  • Open Access

    ARTICLE

    Pancreatic Cancer Data Classification with Quantum Machine Learning

    Amit Saxena1, Smita Saxena2,*

    Journal of Quantum Computing, Vol.5, pp. 1-13, 2023, DOI:10.32604/jqc.2023.044555

    Abstract Quantum computing is a promising new approach to tackle the complex real-world computational problems by harnessing the power of quantum mechanics principles. The inherent parallelism and exponential computational power of quantum systems hold the potential to outpace classical counterparts in solving complex optimization problems, which are pervasive in machine learning. Quantum Support Vector Machine (QSVM) is a quantum machine learning algorithm inspired by classical Support Vector Machine (SVM) that exploits quantum parallelism to efficiently classify data points in high-dimensional feature spaces. We provide a comprehensive overview of the underlying principles of QSVM, elucidating how different quantum feature maps and quantum… More >

  • Open Access

    ARTICLE

    Quantum-Resistant Multi-Feature Attribute-Based Proxy Re-Encryption Scheme for Cloud Services

    Jinqiu Hou1, Changgen Peng1,*, Weijie Tan1,2, Hongfa Ding3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 917-938, 2024, DOI:10.32604/cmes.2023.027276

    Abstract Cloud-based services have powerful storage functions and can provide accurate computation. However, the question of how to guarantee cloud-based services access control and achieve data sharing security has always been a research highlight. Although the attribute-based proxy re-encryption (ABPRE) schemes based on number theory can solve this problem, it is still difficult to resist quantum attacks and have limited expression capabilities. To address these issues, we present a novel linear secret sharing schemes (LSSS) matrix-based ABPRE scheme with the fine-grained policy on the lattice in the research. Additionally, to detect the activities of illegal proxies, homomorphic signature (HS) technology is… More >

  • Open Access

    ARTICLE

    Role-Based Network Embedding via Quantum Walk with Weighted Features Fusion

    Mingqiang Zhou*, Mengjiao Li, Zhiyuan Qian, Kunpeng Li

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2443-2460, 2023, DOI:10.32604/cmc.2023.038675

    Abstract Role-based network embedding aims to embed role-similar nodes into a similar embedding space, which is widely used in graph mining tasks such as role classification and detection. Roles are sets of nodes in graph networks with similar structural patterns and functions. However, the role-similar nodes may be far away or even disconnected from each other. Meanwhile, the neighborhood node features and noise also affect the result of the role-based network embedding, which are also challenges of current network embedding work. In this paper, we propose a Role-based network Embedding via Quantum walk with weighted Features fusion (REQF), which simultaneously considers… More >

Displaying 1-10 on page 1 of 169. Per Page