Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Nodule Detection Using Local Binary Pattern Features to Enhance Diagnostic Decisions

    Umar Rashid1,2,*, Arfan Jaffar1,2, Muhammad Rashid3, Mohammed S. Alshuhri4, Sheeraz Akram1,4,5

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3377-3390, 2024, DOI:10.32604/cmc.2024.046320 - 26 March 2024

    Abstract Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter. Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal threshold value. Secondly, geometrical features such as More >

  • Open Access

    ARTICLE

    Lung Cancer Segmentation with Three-Parameter Logistic Type Distribution Model

    Debnath Bhattacharyya1, Eali. Stephen Neal Joshua2, N. Thirupathi Rao2, Yung-cheol Byun3,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1447-1465, 2023, DOI:10.32604/cmc.2023.031878 - 06 February 2023

    Abstract Lung cancer is the leading cause of mortality in the world affecting both men and women equally. When a radiologist just focuses on the patient’s body, it increases the amount of strain on the radiologist and the likelihood of missing pathological information such as abnormalities are increased. One of the primary objectives of this research work is to develop computer-assisted diagnosis and detection of lung cancer. It also intends to make it easier for radiologists to identify and diagnose lung cancer accurately. The proposed strategy which was based on a unique image feature, took into… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for the Lung(s) Nodule Detection Using the Deformable Model and Distance Transform

    Ayyaz Hussain1, Mohammed Alawairdhi2, Fayez Alazemi3, Sajid Ali Khan4, Muhammad Ramzan2,*

    Intelligent Automation & Soft Computing, Vol.26, No.5, pp. 857-871, 2020, DOI:10.32604/iasc.2020.010120

    Abstract The Computer Aided Diagnosis (CAD) systems are gaining more recognition and being used as an aid by clinicians for detection and interpretation of diseases every passing day due to their increasing accuracy and reliability. The lung(s) nodule detection is a very crucial and difficult step for CAD systems. In this paper, a hybrid approach for the lung nodule detection using a deformable model and distance transform has been proposed. The proposed method has the ability to detect all major kinds of nodules such as the juxta-plueral, isolated, and the juxta-vescular, along with the non-solid nodules More >

Displaying 1-10 on page 1 of 3. Per Page