Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    OPTIMIZATION STUDIES OF TRANSPIRATION COOLING USING POROUS MEDIUM WITH GRADUALLY-CHANGED STRUCTURE

    Yu Chena , Shen Dua, Dong Lia, Yang Gaob, Ya-Ling Hea,*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-13, 2020, DOI:10.5098/hmt.15.19

    Abstract Non-uniform heating and vapor blockage deteriorate the effectiveness of transpiration cooling, and an optimization method by using porous media with a gradually-changed structure is proposed. The numerical tool based on a two-phase mixture model and local thermal non-equilibrium assumption considering variable properties of coolant is applied. Porous media with linearly-changed porosity or particle diameter is analyzed. The transient results presented that the structure of gradually-changed porosity (or particle diameter) with appropriate parameters can delay the heat transfer deterioration. And it is confirmed that the present theoretical model is an effective tool for optimization design of More >

  • Open Access

    ARTICLE

    A COMPARATIVE STUDY ON THERMAL CONDUCTIVITY AND RHEOLOGY PROPERTIES OF ALUMINA AND MULTI-WALLED CARBON NANOTUBE NANOFLUIDS

    Zan Wua, Zhaozan Fengb, Bengt Sundéna,*, Lars Wadsöc

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-10, 2014, DOI:10.5098/hmt.5.18

    Abstract Thermal conductivity and rheology behavior of two aqueous nanofluids, i.e., alumina and multi-walled carbon nanotube (MWCNT) nanofluids, were experimentally investigated and compared with previous analytical models. Information about the possible agglomeration size and interfacial thermal resistance in the nanofluids were obtained and partially validated. By incorporating the effects of interfacial thermal resistance, a revised model was found to accurately reproduce the experimental data based on the agglomeration size extracted from the rheology analysis. In addition, the thermal conductivity change of the alumina/water nanofluid with elapsed time was investigated. Thermal conductivity measurements were also conducted for More >

Displaying 1-10 on page 1 of 2. Per Page