Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (304)
  • Open Access

    ARTICLE

    Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect

    Nurlan Zhangabay1,*, Ulzhan Ibraimova2, Marco Bonopera3,*, Ulanbator Suleimenov1, Konstantin Avramov4, Maryna Chernobryvko4, Aigerim Yessengali1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 1-23, 2025, DOI:10.32604/sdhm.2024.053391 - 15 November 2024

    Abstract Using the software ANSYS-19.2/Explicit Dynamics, this study performed finite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack, strengthened by steel wire wrapping. The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied. The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force, which was 6.4% more effective than that at its maximum value. The analysis… More >

  • Open Access

    PROCEEDINGS

    Numerical Modeling for Crack Propagation Based on a Multifunctional Super Singular Element

    Xuecheng Ping1,2,*, Congman Wang1,2, Xingxing Wang1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011724

    Abstract The traditional finite element method (FEM) often requires a large number of refined meshes to analyze the mechanical behavior of geometric discontinuities, its computational efficiency and convergence speed are affected. A FEM for crack propagation based on the combination of an adaptive remeshing technique with the multifunctional super singular element (MSSE) at the crack tip is proposed for the fracture process simulation of two-dimensional (2D) materials. The adaptive FEM for crack propagation divides the crack tip neighborhood into the MSSE region, the protection element (PE) region and the background element (BE) region. The MSSE is… More >

  • Open Access

    PROCEEDINGS

    Characterization and Numerical Simulation of Delamination Propagation Behavior in Carbon Fiber Reinforced Composite Laminates

    Yu Gong1,*, Jianyu Zhang1, Libin Zhao2, Ning Hu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011451

    Abstract Advanced carbon fiber reinforced composite materials are increasingly being used in aerospace and other fields. Composite laminate structure is one of the commonly used configurations, but due to weak interlayer performance, interlayer delamination is prone to occur [1]. The occurrence and growth of delamination will seriously affect the overall integrity and safety of composite structures, making it a focus of attention in the design of laminated structures. Accurately characterizing the delamination mechanical properties of composite laminates and simulating delamination propagation behavior is the basis for damage tolerance design and analysis of composite structures with delamination… More >

  • Open Access

    PROCEEDINGS

    Crack Dynamics Propagation in the Fractured Geothermal Reservoir Under Thermo-Hydro-Mechanical-Chemical Coupling

    Weitao Zhang1, Dongxu Han2,*, Yujie Chen2, Tingyu Li3, Liang Gong1,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011484

    Abstract As climate change accelerates due to fossil fuel use, geothermal energy emerges as an indispensable renewable solution 1. Hot dry rock (HDR) reservoirs, accounting for more than 90% of total geothermal resources 2, have gained wide attention worldwide for their abundant reserves, wide distribution, and carbon-free, stable, and efficient supply characteristics 3. While HDR geothermal energy offers significant potential, its development faces challenges, including the complex interaction between fluid flow, heat transfer, reactive solute transport, and the rock’s mechanical processes, referred to as the THMC coupling process 4. Cracks, ubiquitous in HDR geothermal reservoirs, exhibit… More >

  • Open Access

    ARTICLE

    Virtual Assembly Collision Detection Algorithm Using Backpropagation Neural Network

    Baowei Wang1,2,*, Wen You2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1085-1100, 2024, DOI:10.32604/cmc.2024.055538 - 15 October 2024

    Abstract As computer graphics technology continues to advance, Collision Detection (CD) has emerged as a critical element in fields such as virtual reality, computer graphics, and interactive simulations. CD is indispensable for ensuring the fidelity of physical interactions and the realism of virtual environments, particularly within complex scenarios like virtual assembly, where both high precision and real-time responsiveness are imperative. Despite ongoing developments, current CD techniques often fall short in meeting these stringent requirements, resulting in inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems. To address these limitations, this study introduces a… More >

  • Open Access

    PROCEEDINGS

    Dynamic Crack Propagation of Ceramic Materials under High Temperature Thermal Shock

    Biao Xia1,2, Changxing Zhang2,3,*, Zhanli Liu2, Xue Feng2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012764

    Abstract Ceramics has become one of the most promising candidate materials in the aerospace field due to its advantages of high melting point, corrosion resistance, wear resistance, and high-temperature stability [1,2]. However, the inherent brittleness of ceramics makes it prone to thermal shock failure under high-temperature extreme environments, which can lead to sudden catastrophic accidents in the structure [3-6]. This paper takes the high-temperature resistant ceramic materials in the aerospace industry as the research object. And the dynamic crack propagation mechanism is analyzed. Through the computational method based on the extended finite element method (XFEM), the… More >

  • Open Access

    PROCEEDINGS

    Simulation of Underwater Explosion Shock Wave Propagation in Heterogeneous Fluid Field

    Yuntao Lei1, Wenbin Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011365

    Abstract The underwater explosion could cause the serious damage to the naval ships. Investigating the underwater explosion problem is crucial for the development of marine military power. During the recent years, the underwater explosion dynamics in the homogeneous fluid field has been investigated by lots of researchers. However, there often exist sound speed thermoclines in the real ocean environment, which leads to a more complex fluid environment than the homogeneous fluid. The corresponding numerical calculations become more complicated. In order to fully understand the underwater explosion dynamics in the real ocean environment, we perform the numerical… More >

  • Open Access

    PROCEEDINGS

    Distribution Transport: A High-Efficiency Method for Orbital Uncertainty Propagation

    Changtao Wang1, Honghua Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.010943

    Abstract Orbital uncertainty propagation is fundamental in space situational awareness-related missions such as orbit prediction and tracking. Linear models and full nonlinear Monte Carlo simulations were primarily used to propagate uncertainties [1]. However, these methods hampered the application due to low precision and intensive computation. Over the past two decades, numerous nonlinear uncertainty propagators have been proposed. Among these methods, the state transition tensor (STT) method has been widely used due to its controllable accuracy and high efficiency [2]. However, this method has two drawbacks. First, its semi-analytical formulation is too intricate to implement, which hinders… More >

  • Open Access

    PROCEEDINGS

    Phase-Field Modeling of Interfacial Fracture in Quasicrystal Composites

    Hongzhao Li1, Peidong Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012711

    Abstract Quasicrystals (QCs) are a new class of functional and structural materials with unusual properties, which have quasi-periodic translational symmetry and non-crystallographic rotational symmetry. Due to the special arrangement of atoms, compared with traditional materials, QCs have high strength, high hardness, and high wear resistance, and can be used as a particle reinforcement phase of polymer or metal matrix composites to improve the performance of materials. QC composites are a special type of composites in which the high strength and hardness of QCs can effectively enhance the mechanical properties of the composites while maintaining the lightweight… More >

  • Open Access

    PROCEEDINGS

    An Energy-Based Local-Nonlocal Coupling Scheme for Heterogeneous Material Brittle Fractures: Analysis and Simulations

    Shaoqi Zheng1, Zihao Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012200

    Abstract This study proposes a novel method for predicting the microcrack propagation in composites based on coupling the local and non-local micromechanics. The special feature of this method is that it can take full advantages of both the continuum micromechanics as a local model and peridynamic micromechanics as a non-local model to achieve composite fracture simulation with a higher level of accuracy and efficiency. Based on the energy equivalence, we first establish the equivalent continuum micromechanics model with equivalent stiffness operators through peridynamic micromechanics model. These two models are then coupled into a closed equation system, More >

Displaying 1-10 on page 1 of 304. Per Page