Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Advancing PCB Quality Control: Harnessing YOLOv8 Deep Learning for Real-Time Fault Detection

    Rehman Ullah Khan1, Fazal Shah2,*, Ahmad Ali Khan3, Hamza Tahir2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 345-367, 2024, DOI:10.32604/cmc.2024.054439 - 15 October 2024

    Abstract Printed Circuit Boards (PCBs) are materials used to connect components to one another to form a working circuit. PCBs play a crucial role in modern electronics by connecting various components. The trend of integrating more components onto PCBs is becoming increasingly common, which presents significant challenges for quality control processes. Given the potential impact that even minute defects can have on signal traces, the surface inspection of PCB remains pivotal in ensuring the overall system integrity. To address the limitations associated with manual inspection, this research endeavors to automate the inspection process using the YOLOv8… More >

  • Open Access

    ARTICLE

    YOLO-RLC: An Advanced Target-Detection Algorithm for Surface Defects of Printed Circuit Boards Based on YOLOv5

    Yuanyuan Wang1,2,*, Jialong Huang1, Md Sharid Kayes Dipu1, Hu Zhao3, Shangbing Gao1,2, Haiyan Zhang1,2, Pinrong Lv1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4973-4995, 2024, DOI:10.32604/cmc.2024.055839 - 12 September 2024

    Abstract Printed circuit boards (PCBs) provide stable connections between electronic components. However, defective printed circuit boards may cause the entire equipment system to malfunction, resulting in incalculable losses. Therefore, it is crucial to detect defective printed circuit boards during the generation process. Traditional detection methods have low accuracy in detecting subtle defects in complex background environments. In order to improve the detection accuracy of surface defects on industrial printed circuit boards, this paper proposes a residual large kernel network based on YOLOv5 (You Only Look Once version 5) for PCBs surface defect detection, called YOLO-RLC (You… More >

  • Open Access

    ARTICLE

    Printed Circuit Board (PCB) Surface Micro Defect Detection Model Based on Residual Network with Novel Attention Mechanism

    Xinyu Hu, Defeng Kong*, Xiyang Liu, Junwei Zhang, Daode Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 915-933, 2024, DOI:10.32604/cmc.2023.046376 - 30 January 2024

    Abstract Printed Circuit Board (PCB) surface tiny defect detection is a difficult task in the integrated circuit industry, especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks. To improve the performance of PCB surface tiny defects detection, a PCB tiny defects detection model based on an improved attention residual network (YOLOX-AttResNet) is proposed. First, the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet (Squeeze and Excitation Network) attention… More >

  • Open Access

    ARTICLE

    Detection Algorithm of Surface Defect Word on Printed Circuit Board

    Min Zhang*, Haixu Xi

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3911-3923, 2023, DOI:10.32604/csse.2023.036709 - 03 April 2023

    Abstract For Printed Circuit Board (PCB) surface defect detection, traditional detection methods mostly focus on template matching-based reference method and manual detections, which have the disadvantages of low defect detection efficiency, large errors in defect identification and localization, and low versatility of detection methods. In order to further meet the requirements of high detection accuracy, real-time and interactivity required by the PCB industry in actual production life. In the current work, we improve the You-only-look-once (YOLOv4) defect detection method to train and detect six types of PCB small target defects. Firstly, the original Cross Stage Partial… More >

  • Open Access

    ARTICLE

    Algorithmic Scheme for Concurrent Detection and Classification of Printed Circuit Board Defects

    Jakkrit Onshaunjit, Jakkree Srinonchat*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 355-367, 2022, DOI:10.32604/cmc.2022.017698 - 03 November 2021

    Abstract An ideal printed circuit board (PCB) defect inspection system can detect defects and classify PCB defect types. Existing defect inspection technologies can identify defects but fail to classify all PCB defect types. This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types. In the proposed algorithmic scheme, fuzzy c-means clustering is used for image segmentation via image subtraction prior to defect detection. Arithmetic and logic operations, the circle hough transform (CHT), morphological reconstruction (MR), and connected component labeling (CCL) are used in defect classification. The algorithmic scheme achieves More >

  • Open Access

    ARTICLE

    Defect Detection in Printed Circuit Boards with Pre-Trained Feature Extraction Methodology with Convolution Neural Networks

    Mohammed A. Alghassab*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 637-652, 2022, DOI:10.32604/cmc.2022.019527 - 07 September 2021

    Abstract Printed Circuit Boards (PCBs) are very important for proper functioning of any electronic device. PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs. If PCBs do not function properly then the whole electric machine might fail. So, keeping this in mind researchers are working in this field to develop error free PCBs. Initially these PCBs were examined by the human beings manually, but the human error did not give good results as sometime defected PCBs were categorized as non-defective. So, researchers and experts transformed this… More >

  • Open Access

    ARTICLE

    Stress Analysis of Printed Circuit Board with Different Thickness and Composite Materials Under Shock Loading

    Kuan-Ting Liu1, Chun-Lin Lu1, Nyan-Hwa Tai2, Meng-Kao Yeh1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 661-674, 2020, DOI:10.32604/cmes.2020.07792 - 01 February 2020

    Abstract In this study, the deformation and stress distribution of printed circuit board (PCB) with different thickness and composite materials under a shock loading were analyzed by the finite element analysis. The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first. Moreover, the finite element models of the PCB with different thickness by stacking various number of layers were discussed. In addition to changing thickness, the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement. The non-linear material property of copper foil was considered in… More >

Displaying 1-10 on page 1 of 7. Per Page