Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    REVIEW

    Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods

    Daixuan Zhou1, Yujin Liu1, Xu Wang2, Fuxing Wang1, Yan Jia2,*

    Energy Engineering, Vol.121, No.12, pp. 3573-3616, 2024, DOI:10.32604/ee.2024.055853 - 22 November 2024

    Abstract With the increasing proportion of renewable energy in China’s energy structure, among which photovoltaic power generation is also developing rapidly. As the photovoltaic (PV) power output is highly unstable and subject to a variety of factors, it brings great challenges to the stable operation and dispatch of the power grid. Therefore, accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy. Currently, the short-term prediction of PV power has received extensive attention and research, but the accuracy and precision of the prediction have to be further improved. More > Graphic Abstract

    Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods

  • Open Access

    ARTICLE

    Photovoltaic Power Generation Power Prediction under Major Extreme Weather Based on VMD-KELM

    Yuxuan Zhao1,2,*, Bo Wang1, Shu Wang1, Wenjun Xu2, Gang Ma2

    Energy Engineering, Vol.121, No.12, pp. 3711-3733, 2024, DOI:10.32604/ee.2024.054032 - 22 November 2024

    Abstract The output of photovoltaic power stations is significantly affected by environmental factors, leading to intermittent and fluctuating power generation. With the increasing frequency of extreme weather events due to global warming, photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions. The integration of these stations on a large scale into the power grid could potentially pose challenges to system stability. To address this issue, in this study, we propose a network architecture based on VMD-KELM for predicting the power output of photovoltaic power plants during severe weather… More >

  • Open Access

    ARTICLE

    Assessment of Operational Performance in a Power Generation/Selling Integrated Company Using a Dynamic Proportional Adjustment Coefficient

    Jingbin Wu1,*, Hongming Yang2, Sheng Xiang2

    Energy Engineering, Vol.121, No.11, pp. 3263-3287, 2024, DOI:10.32604/ee.2024.054019 - 21 October 2024

    Abstract Currently, the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies, lacking a system tailored to the operational characteristics of power generation/selling integrated companies. Therefore, this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company, encompassing three dimensions: basic capacity, development potential, and external environment. A dynamic proportional adjustment coefficient is designed, along with a subjective and objective weighting model for assessment indexes based on a combined weighting method. Subsequently, the operational performance of an integrated company is assessed More > Graphic Abstract

    Assessment of Operational Performance in a Power Generation/Selling Integrated Company Using a Dynamic Proportional Adjustment Coefficient

  • Open Access

    ARTICLE

    Mitigating Carbon Emissions: A Comprehensive Analysis of Transitioning to Hydrogen-Powered Plants in Japan’s Energy Landscape Post-Fukushima

    Nugroho Agung Pambudi1,2,4,*, Andrew Chapman, Alfan Sarifudin1,3, Desita Kamila Ulfa4, Iksan Riva Nanda5

    Energy Engineering, Vol.121, No.5, pp. 1143-1159, 2024, DOI:10.32604/ee.2024.047555 - 30 April 2024

    Abstract One of the impacts of the Fukushima disaster was the shutdown of all nuclear power plants in Japan, reaching zero production in 2015. In response, the country started importing more fossil energy including coal, oil, and natural gas to fill the energy gap. However, this led to a significant increase in carbon emissions, hindering the efforts to reduce its carbon footprint. In the current situation, Japan is actively working to balance its energy requirements with environmental considerations, including the utilization of hydrogen fuel. Therefore, this paper aims to explore the feasibility and implications of using… More >

  • Open Access

    ARTICLE

    Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System

    Zhongping Liu1, Enhui Sun2,*, Jiahao Shi2, Lei Zhang2, Qi Wang1, Jiali Dong1

    Energy Engineering, Vol.121, No.4, pp. 913-932, 2024, DOI:10.32604/ee.2023.043973 - 26 March 2024

    Abstract There is a growing need to explore the potential of coal-fired power plants (CFPPs) to enhance the utilization rate of wind power (wind) and photovoltaic power (PV) in the green energy field. This study developed a load regulation model for a multi-power generation system comprising wind, PV, and coal energy storage using real-world data. The power supply process was divided into eight fundamental load regulation scenarios, elucidating the influence of each scenario on load regulation. Within the framework of the multi-power generation system with the wind (50 MW) and PV (50 MW) alongside a CFPP… More > Graphic Abstract

    Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System

  • Open Access

    ARTICLE

    Analysis and Modeling of Time Output Characteristics for Distributed Photovoltaic and Energy Storage

    Kaicheng Liu1,3,*, Chen Liang2, Xiaoyang Dong2, Liping Liu1

    Energy Engineering, Vol.121, No.4, pp. 933-949, 2024, DOI:10.32604/ee.2023.043658 - 26 March 2024

    Abstract Due to the unpredictable output characteristics of distributed photovoltaics, their integration into the grid can lead to voltage fluctuations within the regional power grid. Therefore, the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios. This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic (PV) generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks (TCN) and Long Short-Term Memory (LSTM). To begin with, an analysis of the spatiotemporal distribution patterns of More >

  • Open Access

    ARTICLE

    Research on the MPPT of Photovoltaic Power Generation Based on Improved WOA and P&O under Partial Shading Conditions

    Jian Zhong, Lei Zhang*, Ling Qin

    Energy Engineering, Vol.121, No.4, pp. 951-971, 2024, DOI:10.32604/ee.2023.041433 - 26 March 2024

    Abstract Partial shading conditions (PSCs) caused by uneven illumination become one of the most common problems in photovoltaic (PV) systems, which can make the PV power-voltage (P-V) characteristics curve show multi-peaks. Traditional maximum power point tracking (MPPT) methods have shortcomings in tracking to the global maximum power point (GMPP), resulting in a dramatic decrease in output power. In order to solve the above problems, intelligent algorithms are used in MPPT. However, the existing intelligent algorithms have some disadvantages, such as slow convergence speed and large search oscillation. Therefore, an improved whale algorithm (IWOA) combined with the More >

  • Open Access

    ARTICLE

    Peak Shaving Strategy of Concentrating Solar Power Generation Based on Multi-Time-Scale and Considering Demand Response

    Lei Fang*, Haiying Dong, Xiaofei Zhen, Shuaibing Li

    Energy Engineering, Vol.121, No.3, pp. 661-679, 2024, DOI:10.32604/ee.2023.029823 - 27 February 2024

    Abstract According to the multi-time-scale characteristics of power generation and demand-side response (DR) resources, as well as the improvement of prediction accuracy along with the approaching operating point, a rolling peak shaving optimization model consisting of three different time scales has been proposed. The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination, generation power, and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full… More >

  • Open Access

    ARTICLE

    A Temporary Frequency Response Strategy Using a Voltage Source-Based Permanent Magnet Synchronous Generator and Energy Storage Systems

    Baogang Chen1, Fenglin Miao2,*, Jing Yang1, Chen Qi2, Wenyan Ji1

    Energy Engineering, Vol.121, No.2, pp. 541-555, 2024, DOI:10.32604/ee.2023.028327 - 25 January 2024

    Abstract Energy storage systems (ESS) and permanent magnet synchronous generators (PMSG) are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different control objectives. The available PMSG kinetic energy and charging/discharging capacities of the ESS were restricted. To improve the inertia response and frequency control capability, we propose a short-term frequency support strategy for the ESS and PMSG. To this end, the weights were embedded in the control loops to adjust the participation of the differential and proportional controls based on the system frequency excursion. The effectiveness of More >

  • Open Access

    ARTICLE

    Experimental Study on the Performance of ORC System Based on Ultra-Low Temperature Heat Sources

    Tianyu Zhou1, Liang Hao1, Xin Xu2,3, Meng Si2,3, Lian Zhang2,3,*

    Energy Engineering, Vol.121, No.1, pp. 145-168, 2024, DOI:10.32604/ee.2023.042798 - 27 December 2023

    Abstract This paper discussed the experimental results of the performance of an organic Rankine cycle (ORC) system with an ultra-low temperature heat source. The low boiling point working medium R134a was adopted in the system. The simulated heat source temperature (SHST) in this work was set from 39.51°C to 48.60°C by the simulated heat source module. The influence of load percentage of simulated heat source (LPSHS) between 50% and 70%, the rotary valve opening (RVO) between 20% and 100%, the resistive load between 36 Ω and 180 Ω or the no-load of the generator, as well… More >

Displaying 1-10 on page 1 of 35. Per Page