Bingfei Liu1, Guansuo Dui1,2, Yuping Zhu3
CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 247-276, 2011, DOI:10.3970/cmes.2011.078.247
Abstract A constitutive model considering the effect hydrostatic stresses induced by porosity on the macroscopic behavior of porous Shape Memory Alloys (SMAs) is developed in this paper. First, a unit-cell model is adopted to establish the constitutive relations for the porous SMAs with SMA matrix and the porosity taken to be voids. Dilatational plasticity theory is then generalized for the SMA matrix. Based on an approximation of the velocity field and the upper bound theory, an explicit yield function for the porous SMA is derived from micromechanical considerations. Finally, an example for the uniaxial response under More >