Chunlei Ruan1,2,*, Cengceng Dong1, Kunfeng Liang3, Zhijun Liu1, Xinru Bao1
CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 3033-3049, 2024, DOI:10.32604/cmes.2023.030607
- 15 December 2023
Abstract Using Euler’s first-order explicit (EE) method and the peridynamic differential operator (PDDO) to discretize the time and internal crystal-size derivatives, respectively, the Euler’s first-order explicit method–peridynamic differential operator (EE–PDDO) was obtained for solving the one-dimensional population balance equation in crystallization. Four different conditions during crystallization were studied: size-independent growth, size-dependent growth in a batch process, nucleation and size-independent growth, and nucleation and size-dependent growth in a continuous process. The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods. The method is More >
Graphic Abstract