Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    A Pooling Method Developed for Use in Convolutional Neural Networks

    İsmail Akgül*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 751-770, 2024, DOI:10.32604/cmes.2024.052549 - 20 August 2024

    Abstract In convolutional neural networks, pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models. These methods reduce the computational amount of convolutional neural networks, making the neural network more efficient. Maximum pooling, average pooling, and minimum pooling methods are generally used in convolutional neural networks. However, these pooling methods are not suitable for all datasets used in neural network applications. In this study, a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural… More >

  • Open Access

    ARTICLE

    An Improved UNet Lightweight Network for Semantic Segmentation of Weed Images in Corn Fields

    Yu Zuo1, Wenwen Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805 - 20 June 2024

    Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >

  • Open Access

    ARTICLE

    An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism

    Zhijun Guo1, Yun Sun2,*, Ying Wang1, Chaoqi Fu3, Jilong Zhong4,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2375-2398, 2024, DOI:10.32604/cmc.2024.048112 - 15 May 2024

    Abstract Due to the time-varying topology and possible disturbances in a conflict environment, it is still challenging to maintain the mission performance of flying Ad hoc networks (FANET), which limits the application of Unmanned Aerial Vehicle (UAV) swarms in harsh environments. This paper proposes an intelligent framework to quickly recover the cooperative coverage mission by aggregating the historical spatio-temporal network with the attention mechanism. The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model. A spatio-temporal node pooling method is proposed to ensure all node location features… More >

  • Open Access

    ARTICLE

    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793 - 16 April 2024

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case… More >

  • Open Access

    ARTICLE

    A Smart Heart Disease Diagnostic System Using Deep Vanilla LSTM

    Maryam Bukhari1, Sadaf Yasmin1, Sheneela Naz2, Mehr Yahya Durrani1, Mubashir Javaid3, Jihoon Moon4, Seungmin Rho5,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1251-1279, 2023, DOI:10.32604/cmc.2023.040329 - 31 October 2023

    Abstract Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics, which aid in the prevention of several diseases including heart-related abnormalities. In this context, regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram (ECG) signals has the potential to save many lives. In existing studies, several heart disease diagnostic systems are proposed by employing different state-of-the-art methods, however, improving such methods is always an intriguing area of research. Hence, in this research, a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals. The proposed… More >

  • Open Access

    ARTICLE

    Text Extraction with Optimal Bi-LSTM

    Bahera H. Nayef1,*, Siti Norul Huda Sheikh Abdullah2, Rossilawati Sulaiman2, Ashwaq Mukred Saeed3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3549-3567, 2023, DOI:10.32604/cmc.2023.039528 - 08 October 2023

    Abstract Text extraction from images using the traditional techniques of image collecting, and pattern recognition using machine learning consume time due to the amount of extracted features from the images. Deep Neural Networks introduce effective solutions to extract text features from images using a few techniques and the ability to train large datasets of images with significant results. This study proposes using Dual Maxpooling and concatenating convolution Neural Networks (CNN) layers with the activation functions Relu and the Optimized Leaky Relu (OLRelu). The proposed method works by dividing the word image into slices that contain characters.… More >

  • Open Access

    ARTICLE

    PF-YOLOv4-Tiny: Towards Infrared Target Detection on Embedded Platform

    Wenbo Li, Qi Wang*, Shang Gao

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 921-938, 2023, DOI:10.32604/iasc.2023.038257 - 29 April 2023

    Abstract Infrared target detection models are more required than ever before to be deployed on embedded platforms, which requires models with less memory consumption and better real-time performance while considering accuracy. To address the above challenges, we propose a modified You Only Look Once (YOLO) algorithm PF-YOLOv4-Tiny. The algorithm incorporates spatial pyramidal pooling (SPP) and squeeze-and-excitation (SE) visual attention modules to enhance the target localization capability. The PANet-based-feature pyramid networks (P-FPN) are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy. To lighten the network, the standard convolutions other than the backbone More >

  • Open Access

    ARTICLE

    Large Scale Fish Images Classification and Localization using Transfer Learning and Localization Aware CNN Architecture

    Usman Ahmad1, Muhammad Junaid Ali2, Faizan Ahmed Khan3, Arfat Ahmad Khan4, Arif Ur Rehman1, Malik Muhammad Ali Shahid5, Mohd Anul Haq6,*, Ilyas Khan7, Zamil S. Alzamil6, Ahmed Alhussen8

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2125-2140, 2023, DOI:10.32604/csse.2023.031008 - 03 November 2022

    Abstract Building an automatic fish recognition and detection system for large-scale fish classes is helpful for marine researchers and marine scientists because there are large numbers of fish species. However, it is quite difficult to build such systems owing to the lack of data imbalance problems and large number of classes. To solve these issues, we propose a transfer learning-based technique in which we use Efficient-Net, which is pre-trained on ImageNet dataset and fine-tuned on QuT Fish Database, which is a large scale dataset. Furthermore, prior to the activation layer, we use Global Average Pooling (GAP)… More >

  • Open Access

    ARTICLE

    An Interpretable CNN for the Segmentation of the Left Ventricle in Cardiac MRI by Real-Time Visualization

    Jun Liu1, Geng Yuan2, Changdi Yang2, Houbing Song3, Liang Luo4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1571-1587, 2023, DOI:10.32604/cmes.2022.023195 - 27 October 2022

    Abstract The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research. The safety criteria for medical imaging are highly stringent, and models are required for an explanation. However, existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs. Thus, the interpretability of CNNs has come into the spotlight. Since medical imaging data are limited, many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public ImageNet datasets by the transfer learning method. Unfortunately, this generates… More >

  • Open Access

    ARTICLE

    Anomaly Detection in Social Media Texts Using Optimal Convolutional Neural Network

    Swarna Sudha Muppudathi1, Valarmathi Krishnasamy2,*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1027-1042, 2023, DOI:10.32604/iasc.2023.031165 - 29 September 2022

    Abstract Social Networking Sites (SNSs) are nowadays utilized by the whole world to share ideas, images, and valuable contents by means of a post to reach a group of users. The use of SNS often inflicts the physical and the mental health of the people. Nowadays, researchers often focus on identifying the illegal behaviors in the SNS to reduce its negative influence. The state-of-art Natural Language processing techniques for anomaly detection have utilized a wide annotated corpus to identify the anomalies and they are often time-consuming as well as certainly do not guarantee maximum accuracy. To overcome… More >

Displaying 1-10 on page 1 of 30. Per Page