Facundo I. Altuna1, Borja Fernández-d’Arlas2, M. Angeles Corcuera2, Arantxa Eceiza2, Mirta I. Aranguren3, Pablo M. Stefani3*
Journal of Renewable Materials, Vol.4, No.4, pp. 275-284, 2016, DOI:10.7569/JRM.2016.634120
Abstract Mixtures of biomass-derived polyols were used to synthesize rigid polyurethane (PU) foams. A commercial polymerized methylene diphenyl diisocyanate (pMDI) was used as crosslinker, and distilled water served as foaming agent. The morphology and mechanical properties of foams with different glycerol and water contents were compared in order to evaluate the most suitable formulations. The rigid foams with higher water contents had larger and more anisotropic cells, explaining their lower density. Compressive moduli ranged from about 2.5 MPa to above 20 MPa and collapse stresses from 55 kPa to more than 1 MPa for densities between More >