Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Rapeseed Oil as Feedstock for High Functionality Polyol Synthesis

    M. Kirpluks1*, D. Kalnbunde1, Z. Walterova2, U. Cabulis1

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 258-270, 2017, DOI:10.7569/JRM.2017.634116

    Abstract In this study, polyols with high average functionality were synthesized from a renewable resource, rapeseed oil, as raw material for rigid PU foam production. A well-known method of rapeseed oil fatty acid double bond epoxidation was used to introduce oxirane rings into rapeseed oil structure. The temperature influence on epoxidation reaction conversion rate was studied by volumetric and FTIR spectra analysis. After epoxidation of rapeseed oil, an oxirane ring-opening reaction was carried out to obtain high functionality polyols. Diethylene glycol, a conventional oxirane ring-opening reagent, was compared to amine-based polyfunctional alcohols, diethanolamine and triethanolamine. The introduction of tertiary amine groups… More >

  • Open Access

    ARTICLE

    Thermal-Mechanical Characterization of Polyurethane Rigid Foams: Effect of Modifying Bio-Polyol Content in Isocyanate Prepolymers

    Luis Daniel Mora-Murillo1, Felipe Orozco-Gutierrez2, José Vega-Baudrit2, Rodolfo Jesús González-Paz2*

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 220-230, 2017, DOI:10.7569/JRM.2017.634112

    Abstract Nowadays, green polyurethane (PU) foams are mostly synthesized by replacing an amount of petrochemical polyol with biobased polyol. Here we report five different families of isocyanate prepolymer formulations that were prepared with biobased sources and the correlation between the structure of chains and the properties of the produced PU foam. Foam behavior in tension, torsion, compression, shape memory tests and physical properties were studied by dynamic mechanical thermal analysis (DMTA); interactions in the polymer chains were analyzed by Fourier transform infrared spectroscopy (FTIR); and thermal analysis was performed by thermogravimetry (TGA) and differential scanning calorimetry (DSC). The results showed that… More >

  • Open Access

    ARTICLE

    Karanja Oil Polyol and Rigid Polyurethane Biofoams for Thermal Insulation

    M. Himabindu1, K. Kamalakar2, MSL Karuna2, Aruna Palanisamy1*

    Journal of Renewable Materials, Vol.5, No.2, pp. 124-131, 2017, DOI:10.7569/JRM.2016.634137

    Abstract Rigid polyurethane biofoams were prepared from karanja polyol which was derived by ring-opening reaction of epoxidized karanja oil. The polyol, which had a hydroxyl value of 186 mg KOH/g, was thoroughly characterized and the structure confirmed by spectral techniques. The foam formulations were developed to achieve shrinkage-free foams with water used as the blowing agent. The resulting foams were characterized for their mechanical properties like density, compression strength and flexural strength. The densities and mechanical properties, such as compression and flexural strength, varied with the amount of methylene diphenyl diisocyanate (MDI) for a fixed amount of polyol and other additives… More >

  • Open Access

    ARTICLE

    Polyol Preparation by Liquefaction of Technical Lignins in Crude Glycerol

    Louis C. Muller1*, Sanette Marx1, Hermanus C.M. Vosloo2

    Journal of Renewable Materials, Vol.5, No.1, pp. 67-80, 2017, DOI:10.7569/JRM.2016.634130

    Abstract This work reports a study of polyol synthesis through liquefaction of technical lignins in crude glycerol by means of 1H and 31P NMR spectroscopy. The polyols are intended for preparation of polyurethane foam; thus, it is important to know how different lignin types as well as crude glycerol influence and contribute to the final polyol hydroxyl contents. Polyols prepared from organosolv lignin, kraft lignin and lignosulphonate had hydroxyl numbers suitable for rigid foam of 435, 515 and 529 mgKOH/g, respectively. The polyols differed in composition with glycerol, showing significant variation. During liquefaction the glycerol content was mostly reduced through bonding… More >

  • Open Access

    ARTICLE

    Polyols Based on Poly(ethylene terephthalate) and Tall Oil: Perspectives for Synthesis and Production of Rigid Polyurethane Foams

    A. Ivdre1*, G.D. Soto2, U. Cabulis1

    Journal of Renewable Materials, Vol.4, No.4, pp. 285-293, 2016, DOI:10.7569/JRM.2016.634122

    Abstract This study presents the synthesis of novel polyols made from tall oil (TO) and poly(ethylene terephthalate) (PET) with different TO/PET molar ratios. Rigid polyurethane foams based on these synthesized polyols were obtained and characterized to evaluate polyols’ suitability for the development of light materials with insulating properties. The effect of TO/PET molar ratios on the physical, morphological and mechanical properties of the obtained foams, as well as their thermal insulation characteristics, were evaluated. Increasing amounts of PET in polyurethane foams resulted in higher compression strength and closed cell content, while water absorption was not affected. Results indicated that certain TO/PET… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Glycerol

    Facundo I. Altuna1, Borja Fernández-d’Arlas2, M. Angeles Corcuera2, Arantxa Eceiza2, Mirta I. Aranguren3, Pablo M. Stefani3*

    Journal of Renewable Materials, Vol.4, No.4, pp. 275-284, 2016, DOI:10.7569/JRM.2016.634120

    Abstract Mixtures of biomass-derived polyols were used to synthesize rigid polyurethane (PU) foams. A commercial polymerized methylene diphenyl diisocyanate (pMDI) was used as crosslinker, and distilled water served as foaming agent. The morphology and mechanical properties of foams with different glycerol and water contents were compared in order to evaluate the most suitable formulations. The rigid foams with higher water contents had larger and more anisotropic cells, explaining their lower density. Compressive moduli ranged from about 2.5 MPa to above 20 MPa and collapse stresses from 55 kPa to more than 1 MPa for densities between 54 and 143 kg/m3. Densification… More >

  • Open Access

    ARTICLE

    Solid “Green” Polyurethanes Based on Rapeseed Oil Polyol and Modified with Glycerol and Microcellulose

    Piotr Rojek2, Mirta I. Aranguren1, Aleksander Prociak2, Mirna A. Mosiewicki1*

    Journal of Renewable Materials, Vol.4, No.4, pp. 266-274, 2016, DOI:10.7569/JRM.2016.634113

    Abstract Solid biobased polyurethanes (PUs) were prepared from a rapeseed oil-based polyol (ROPO) synthesized by epoxidation reaction followed by oxirane ring-opening with diethylene glycol. The reference material was modified by replacement of the ROPO with glycerol in different proportions and also by addition of commercial microcellulose (MC). The curing process of the reactive mixtures was monitored by rheological measurements and the analysis showed that both MC and glycerol increase the time of crossover between storage and loss modulus (liquid to solid transition in the response at 1 Hz). The completely cured polyurethanes were characterized by physical, morphological and mechanical analysis. The… More >

  • Open Access

    ARTICLE

    Synthesis and Thermal Characterization of Polyurethanes Obtained from Cottonseed and Corn Oil-Based Polyols

    Karina Cruz-Aldaco1, Erika Flores-Loyola2, Cristóbal Noé Aguilar-González1, Nuria Burgos3, Alfonso Jiménez3*

    Journal of Renewable Materials, Vol.4, No.3, pp. 178-184, 2016, DOI:10.7569/JRM.2016.634107

    Abstract The use of vegetable oils to replace fossil feedstock has become an area of opportunity and a priority for study in the field of polymer science. Vegetable oils are considered as renewable resources with high potential, low cost and full availability. The aim of this study is the synthesis of biobased polyols from cottonseed oil (Gossypium barbadanse) and corn oil (Zea mays) as feedstock. Their synthesis was successfully performed, as can be concluded from the determination of their hydroxyl index as well as the structural and thermal characterization carried out in this work. Polyurethanes from biobased polyols were synthesized with… More >

  • Open Access

    ARTICLE

    Influence of Isocyanate Index on Selected Properties of Flexible Polyurethane Foams Modified with Various Bio-Components

    Aleksander Prociak*, Elźbieta Malewska, Szymon Bąk

    Journal of Renewable Materials, Vol.4, No.1, pp. 78-85, 2016, DOI:10.7569/JRM.2015.634129

    Abstract In this article, the results of the foaming process analysis of fl exible polyurethane with different isocyanate indexes are presented. Two types of flexible polyurethane foams (FPURF) were obtained: (1) by using petrochemical components and a rapeseed-oil-based polyol (used in the amount of 20 wt%), (2) by using petrochemical components and cellulose as a natural fi ller in the amount of 3 php (per hundred parts of polyol). The characteristic parameters of the foaming process, such as the foam’s growth velocity, the core temperature and dielectric polarization, were measured using a Foamat device. Moreover, the following properties of flexible polyurethane… More >

Displaying 31-40 on page 4 of 39. Per Page