Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    PROCEEDINGS

    Bio-Inspired Facile Strategy for Programmable Osmosis-Driven Shape-Morphing Elastomer Composite Structure

    Yuanhang Yang1, Changjin Huang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010991

    Abstract Achieving programmable and reversible deformations of soft materials is a long-standing goal for various applications in soft robotics, flexible electronics and many other fields. Swelling-induced shape-morphing has been intensively studied as one of the potential mechanisms. However, achieving an extremely large swelling ratio (>1000% in volume) remains challenging with existing swellable soft materials (e.g., hydrogels and water-swellable rubbers). Inspired by the shape change enabled by the osmosis-driven swelling in living organisms, herein, we report a polymer composite system composed of fine sodium chloride (NaCl) particles embedded in Ecoflex00-10 polymer. This Ecoflex00-10/NaCl polymer composite can achieve… More >

  • Open Access

    PROCEEDINGS

    Concurrent Design of Composite Structure and Continuous Toolpath for Additive Manufacturing of Fiber-Reinforced Polymer Composites

    Huilin Ren1,2, David W. Rosen2, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010920

    Abstract The advancement of continuous fiber-reinforced polymer additive manufacturing (CFRP-AM) enables the fabrication of structures with complex geometries and superior properties. However, current design methodologies consider toolpath design and structure optimization as separate stages, with toolpath design typically serving as a post-processing step after structure optimization. This sequential methodology limits the full exploitation of fiber reinforced polymer composites (FRPC) capabilities, particularly in achieving optimal structural integrity and manufacturability. In this paper, a manufacturing-oriented method is proposed for designing continuous FRPC structures, in which the structural layout and continuous fiber toolpaths are simultaneously optimized. The integrated design… More >

  • Open Access

    ARTICLE

    Investigation of Polypyrrole and Polypyrrolepolyethyleneimine as Adsorbents for Methyl Orange Dye Adsorption

    NORHABIBAH MOHAMAD1,*, NOORDINI M. SALLEH1,2, HABIBUN NABI MUHAMMAD EKRAMUL MAHMUD1

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 165-189, 2023, DOI:10.32381/JPM.2023.40.3-4.4

    Abstract The present study has explored the adsorption properties of polypyrrole-based adsorbents (polypyrrole and polypyrrole-polyethyleneimine composite) as novel conducting polymers in adsorbing methyl orange (MO) (an anionic dye) effectively from aqueous solution. The adsorption characteristics of the prepared polymer-based adsorbents were characterized by BET, FTIR, FESEM, and XRD methods. The effectiveness of PPy-based adsorbents for MO dye adsorption was examined using the batch adsorption method. Different parameters were changed during the adsorption process, including contact time, solution pH, and adsorbent dosage. The highest BET surface area of the PPy-PEI composite was found to be 11.85 m2 /g,… More >

  • Open Access

    ARTICLE

    Impact on Mechanical Properties of Surface Treated Coconut Leaf Sheath Fiber/Sic Nano Particles Reinforced Phenol-formaldehyde Polymer Composites

    B. BRAILSON MANSINGH1, K. L. NARASIMHAMU2, K. C. VARAPRASAD3, J. S. BINOJ4,*, A. RADHAKRISHNAN5, ALAMRY ALI6

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 71-82, 2023, DOI:10.32381/JPM.2023.40.1-2.6

    Abstract Several agro-wastes are rich in natural fibers and finds scope to be used as reinforcement in composite industry. These natural fibers have some advantages over man-made fibers, including low cost, light weight, renewable nature, high specific strength and modulus, and availability in various forms worldwide. In this paper, the effect of surface modification of leaf sheath coconut fiber (LSF) (an agro-waste) reinforced in phenol formaldehyde matrix composites with silicon carbide (SiC) nano particles as filler material were investigated for its mechanical characteristics. The investigation portrays that coconut LSF (CLSF) modified with potassium permanganate reinforced polymer More >

  • Open Access

    ARTICLE

    A Comparative Investigation of the Biodegradation Behaviour of Linseed Oil-Based Cross-Linked Composites Filled with Industrial Waste Materials in Two Different Soils

    Eglė Malachovskienė1,*, Danguolė Bridžiuvienė1, Jolita Ostrauskaitė2, Justina Vaičekauskaitė2, Gailė Žalūdienė3

    Journal of Renewable Materials, Vol.11, No.3, pp. 1255-1269, 2023, DOI:10.32604/jrm.2022.023574 - 31 October 2022

    Abstract The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers (pine needles, pine bark, grain mill waste, rapeseed cake) and a control sample without filler was studied during 180 days of exposure to two types of forest soil: deciduous and coniferous. The weight loss, morphological, and structural changes of polymer composites were noticed after 180 days of the soil burial test. The greatest weight loss of all tested samples was observed in coniferous forest soil (41.8%–63.2%), while in deciduous forest soil, it ranged between 37.7% and 42.3%. The most significant… More >

  • Open Access

    ARTICLE

    Elevated Temperature Properties of Bamboo Shaving Reinforced Geopolymer Composites

    Xinli Zhang1, Jiayu Zhang1, Zuhua Zhang2,*, Yiqiang Wu1,*, Yingfeng Zuo1

    Journal of Renewable Materials, Vol.11, No.1, pp. 27-40, 2023, DOI:10.32604/jrm.2023.023400 - 10 August 2022

    Abstract Geopolymer is a new alternative cement binder to produce concrete. In the present study, a novel geopolymer composites containing bamboo shaving (0–2 wt.%) were fabricated and exposed to the temperatures of 200°C, 400°C, 600°C and 800°C. Physical properties, micro-structure, and mechanical strengths of the geopolymer composites were evaluated before and after heating in order to understand their thermal properties, which are essential for the use as building materials. As the temperature rises, the drying shrinkage and apparent porosity of the composites increase, while the compressive and bending strengths decrease. At the temperature range of 200°C–800°C, the… More >

  • Open Access

    ARTICLE

    Comparative Investigations on Fracture Toughness and Damping Response of Fabric Reinforced Epoxy Composites

    GAURAV AGARWAL

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 255-267, 2022, DOI:10.32381/JPM.2022.39.3-4.6

    Abstract Studies were conducted to observe the effect of fracture toughness and damping response on fabric reinforced epoxy polymer composites. The samples of glass fabric, kevlar fabric and carbon fabric having 15wt%, 25wt%, 35wt%, 45wt% and 55wt % fabric content were prepared and tested following ASTM standards. Fracture toughness, peak load and increase in energy absorption are determined for the fabric-epoxy composites. Effect of temperature on storage modulus, loss modulus and tan delta values for various percentages of fabric epoxy composites are noticed and corresponding damping response behaviour is determined. The results revealed that reduction in More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of a Novel Bamboo Shaving Geopolymer Composite

    Jiayu Zhang, Zhenyang Li, Xinli Zhang*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2871-2881, 2022, DOI:10.32604/jrm.2022.019373 - 29 June 2022

    Abstract Geopolymers are inorganic aluminosilicate materials, which have been a great research interest as a material for sustainable development. However, they possess relatively low toughness properties similar to brittle solids. The limitation may be altered by fiber reinforcement to improve their strength and toughness. This research describes the synthesis of bamboo shaving (BS) reinforced geopolymer composites and the characterization of their mechanical properties. The effect of BS content (0–2 wt. %) on the physical and mechanical properties and microstructure of metakaolin based geopolymer paste were investigated. The workability, setting time, bulk density, apparent porosity, thermal conductivity,… More >

  • Open Access

    REVIEW

    A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites

    Jorge Neto, Henrique Queiroz, Ricardo Aguiar, Rosemere Lima, Daniel Cavalcanti, Mariana Doina Banea*

    Journal of Renewable Materials, Vol.10, No.3, pp. 561-589, 2022, DOI:10.32604/jrm.2022.017434 - 28 September 2021

    Abstract Natural fiber reinforced polymer composites (NFRCs) have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites, such as low environmental impact and low cost. However, one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre. One method to increase their performance is hybridization. Therefore, understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest. This paper provides an overview of… More > Graphic Abstract

    A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites

  • Open Access

    ARTICLE

    Conductive Polymer Composites Fabricated by Disposable Face Masks and Multi-Walled Carbon Nanotubes: Crystalline Structure and Enhancement Effect

    Meng Xiang1, Zhou Yang1, Jingjing Yang1, Tong Lu1, Danqi Wu1, Zhijun Liu1, Rongjie Xue1, Shuang Dong2,*

    Journal of Renewable Materials, Vol.10, No.3, pp. 821-831, 2022, DOI:10.32604/jrm.2022.017347 - 28 September 2021

    Abstract Influenced by recent COVID-19, wearing face masks to block the spread of the epidemic has become the simplest and most effective way. However, after the people wear masks, thousands of tons of medical waste by used disposable masks will be generated every day in the world, causing great pressure on the environment. Herein, conductive polymer composites are fabricated by simple melt blending of mask fragments (mask polypropylene, short for mPP) and multi-walled carbon nanotubes (MWNTs). MWNTs were used as modifiers for composites because of their high strength and high conductivity. The crystalline structure, mechanical, electrical… More >

Displaying 1-10 on page 1 of 30. Per Page