Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    Manufacturing a Biodegradable Container for Planting Plants Based on an Innovative Wood-Polymer Composite

    Ksenia Anikeeva*, Ruslan Safin

    Journal of Renewable Materials, Vol.13, No.11, pp. 2235-2252, 2025, DOI:10.32604/jrm.2025.02025-0128 - 24 November 2025

    Abstract The use of wood-polymer composites (WPC) based on a polymer matrix and wood filler is a modern, environmentally friendly direction in material science. However, untreated wood filler exhibits poor adhesion to hydrophobic polymers due to its hydrophilic lignocellulose fibers. To address this, ozone treatment is employed to enhance compatibility, reduce water absorption, and regulate biodegradation rates. This study investigates the hypothesis that ozone modification of wood filler improves adhesion to thermoplastic starch, thereby enhancing the physico-mechanical properties and controlled biodegradation of WPCs under compost conditions. A comprehensive analysis was conducted on composites containing untreated and… More >

  • Open Access

    ARTICLE

    Synergistic Effect of Silicone Macromolecular Charring Agent and Ammonium Polyphosphate on Improving Flame Retardancy and Mechanical Properties of Ethylene-Butyl Acrylate Copolymer Composites

    Xuan Huo1, Bingchen Wu1, Yuanmeng Lou1, Junlin Zhu1, Cui Li1, Lili Ma1, Ye-Tang Pan2, Chuncheng Hao1,*, Xin Wen1,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 517-530, 2025, DOI:10.32604/jpm.2025.065320 - 14 July 2025

    Abstract Power cables are important pieces of equipment for energy transmission, but achieving a good balance between flame retardancy and mechanical properties of cable sheaths remains a challenge. In this work, a novel intumescent flame retardant (IFR) system containing silicone-containing macromolecular charring agent (Si-MCA) and ammonium polyphosphate (APP) was designed to synergistically improve the flame retardancy and mechanical properties of ethylene-butyl acrylate copolymer (EBA) composites. The optimal mass ratio of APP/Si-MCA was 3/1 in EBA composites (EBA/APP-Si-31), corresponding to the best flame retardancy with 31.2% of limited oxygen index (LOI), V-0 rating in UL-94 vertical burning More > Graphic Abstract

    Synergistic Effect of Silicone Macromolecular Charring Agent and Ammonium Polyphosphate on Improving Flame Retardancy and Mechanical Properties of Ethylene-Butyl Acrylate Copolymer Composites

  • Open Access

    ARTICLE

    Shape Memory Properties of Short-Glass Fiber Reinforced Epoxy Composite Programmed below Glass Transition Temperature

    Kartikey Shahi, Velmurugan Ramachandran*, Ranjith Mohan, Boomurugan Ramachandran

    Journal of Polymer Materials, Vol.42, No.2, pp. 477-496, 2025, DOI:10.32604/jpm.2025.062481 - 14 July 2025

    Abstract A Shape Memory Polymer Composite (SMPC) is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers. Diverging from previous research, which primarily focused on the hot programming of short glass fiber-based SMPCs, this work explores the potential for programming below the glass transition temperature (Tg) for epoxy-based SMPCs. To mitigate the inherent brittleness of the SMPC during deformation, a linear polymer is incorporated, and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties. The findings demonstrate an enhancement in shape fixity and More >

  • Open Access

    REVIEW

    Nanocellulose-Based Adhesives for Sustainable Wood-Polymer Composites: Recent Advancement and Future Perspective

    Amelia Hariry1, Efri Mardawati1,2,*, Apri Heri Iswanto3, Tati Karliati4, Lukmanul Hakim Zaini5,6,*, Muhammad Adly Rahandi Lubis2,7

    Journal of Renewable Materials, Vol.13, No.4, pp. 773-798, 2025, DOI:10.32604/jrm.2025.058359 - 21 April 2025

    Abstract Nanocellulose-based adhesives are gaining attention as a viable alternative to conventional adhesives, offering benefits such as cost-effectiveness and scalability, which make them suitable for various sectors, including cosmetics, pharmaceuticals, biodegradable products, and as reinforcing agents in natural adhesives. This review delves into the current advancements in nanocellulose-based adhesive solutions for sustainable and eco-friendly wood composites, using systematic review methods and bibliometric analysis. Data were collected from the Scopus database, spanning from 2007 to 2024, and visualized using VOSviewer to highlight emerging trends in the field. The analysis revealed that nanocellulose shows great potential as a More >

  • Open Access

    REVIEW

    A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology

    Sachin Ghalme1,*, Mohammad Hayat2, Mahesh Harne3

    Journal of Renewable Materials, Vol.13, No.2, pp. 273-295, 2025, DOI:10.32604/jrm.2024.056275 - 20 February 2025

    Abstract With growing concerns for global warming and environmental issues, the research community has contributed significantly to green technology in the area of material science through the development of natural fiber-reinforced polymer composites (NFRPC). Polymers serve as the matrix in NFRPC, while natural fibers serve as the reinforcing materials. Demand for high-performing materials made with natural resources is growing continuously. Natural fiber-reinforced polymer composites are sustainable biocomposites fabricated with natural fibers embedded with a polymer matrix. They offer a wide range of advantages, including a low weight-to-strength ratio, high flexural strength, damping properties, and resistance… More > Graphic Abstract

    A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology

  • Open Access

    ARTICLE

    Harnessing the sunlight to degrade dye using polythiophene-based silver dopped ZnS composite

    A. Fatimaa, N. Nadeema, Bahaa Salehb, Z. A. Rehanc, S. Noreena, Hafiz T. Alib, M. Zahida,*

    Chalcogenide Letters, Vol.21, No.11, pp. 895-915, 2024, DOI:10.15251/CL.2024.2111.895

    Abstract The current research work investigated the photocatalytic degradation of dye using polythiophene-based silver-doped zinc sulfide (PT/Ag-ZnS). The ternary composite was synthesized by in-situ chemical oxidation polymerization approach and thoroughly characterized. Maximum photocatalytic activity depicted > 80% for Ag-ZnS and > 94% for PT/Ag-ZnS at pH 7 and 4 respectively at 10 mM oxidant and 30 mg/100 mL catalyst dose, 10 ppm IDC under 90 min. DMSO serves as an effective radical scavenger. The novel polymeric composite exhibits efficient reusability upto five cycles. Pseudo 1st -order kinetic model was best fitted for PT/Ag-ZnS. Toxicity analysis gave a More >

  • Open Access

    REVIEW

    A Review on Coir Fibre, Coir Fibre Reinforced Polymer Composites and Their Current Applications

    Chioma Ifeyinwa Madueke1,*, Okwunna Maryjane Ekechukwu2, Funsho Olaitan Kolawole3

    Journal of Renewable Materials, Vol.12, No.12, pp. 2017-2047, 2024, DOI:10.32604/jrm.2024.055207 - 20 December 2024

    Abstract Coir fibre has generated much interest as an eco-friendly, sustainable fibre with low density. This review findings show that coir fibres are abundant, with an average global annual production of 1019.7 × 103 tonnes, with about 63% of this volume produced from India. Extraction of coir has been carried out through water retting. However, the retting period has been limited to 4–10 months. The lignin content of coir is more than 60% higher than that of other natural fibres; hence, coir could double as a source of lignin for other applications. The diameter of coir… More >

  • Open Access

    PROCEEDINGS

    Study on Repair of Cracked Aircraft Structures with Single-Sided Bonded Carbon Fiber-Reinforced Polymer Composite Patches

    Junshan Hu1,2,*, Shiqing Mi1, Jinrong Fang1, Wei Tian1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011840

    Abstract This research aims to investigate efficient repair techniques of cracked Ti-alloy aircraft structures with adhesively bonded carbon fiber-reinforced polymer composite patches. The repaired specimens in the configuration of a Ti-alloy butt joint with one-side bonded composite patch were prepared under multiple repair factors including patch thickness, patch length, adhesive thickness, cure pressure, patch layup and surface treatment. The repair efficiency was evaluated by loading behavior, bonded interface microstructure and failure mode. The three-dimensional (3D) finite element (FE) model has been established. Based on 3D Hashin failure criteria, the damage initiation and evolution in CFRP were… More >

  • Open Access

    PROCEEDINGS

    Bio-Inspired Facile Strategy for Programmable Osmosis-Driven Shape-Morphing Elastomer Composite Structure

    Yuanhang Yang1, Changjin Huang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010991

    Abstract Achieving programmable and reversible deformations of soft materials is a long-standing goal for various applications in soft robotics, flexible electronics and many other fields. Swelling-induced shape-morphing has been intensively studied as one of the potential mechanisms. However, achieving an extremely large swelling ratio (>1000% in volume) remains challenging with existing swellable soft materials (e.g., hydrogels and water-swellable rubbers). Inspired by the shape change enabled by the osmosis-driven swelling in living organisms, herein, we report a polymer composite system composed of fine sodium chloride (NaCl) particles embedded in Ecoflex00-10 polymer. This Ecoflex00-10/NaCl polymer composite can achieve… More >

  • Open Access

    PROCEEDINGS

    Concurrent Design of Composite Structure and Continuous Toolpath for Additive Manufacturing of Fiber-Reinforced Polymer Composites

    Huilin Ren1,2, David W. Rosen2, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010920

    Abstract The advancement of continuous fiber-reinforced polymer additive manufacturing (CFRP-AM) enables the fabrication of structures with complex geometries and superior properties. However, current design methodologies consider toolpath design and structure optimization as separate stages, with toolpath design typically serving as a post-processing step after structure optimization. This sequential methodology limits the full exploitation of fiber reinforced polymer composites (FRPC) capabilities, particularly in achieving optimal structural integrity and manufacturability. In this paper, a manufacturing-oriented method is proposed for designing continuous FRPC structures, in which the structural layout and continuous fiber toolpaths are simultaneously optimized. The integrated design… More >

Displaying 1-10 on page 1 of 38. Per Page