Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (343)
  • Open Access

    ARTICLE

    Enhancing Corn Starch-Poly(Vinyl Alcohol) and Glycerol Composite Films with Citric Acid Cross-Linking Mechanism: A Green Approach to High-Performance Packaging Materials

    Herlina Marta1, Novita Indrianti2,*, Allifiyah Josi Nur Aziza3, Enny Sholichah4, Titik Budiati3, Achmat Sarifudin5, Yana Cahyana1, Nandi Sukri1, Aldila Din Pangawikan1

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0145 - 23 January 2026

    Abstract Corn starch (CS) is a renewable, biodegradable polysaccharide valued for its film-forming ability, yet native CS films exhibit low mechanical strength, high water sensitivity, and limited thermal stability. This study improves CS-based films by blending with poly(vinyl alcohol) (PVA) or glycerol (GLY) and using citric acid (CA) as a green, non-toxic cross-linker. Composite films were prepared by casting CS–PVA or CS–GLY with CA at 0%–0.20% (w/w of starch). The influence of CA on physicochemical, mechanical, optical, thermal, and water barrier properties was evaluated. CA crosslinking markedly enhanced the tensile strength, water resistance, and thermal stability More > Graphic Abstract

    Enhancing Corn Starch-Poly(Vinyl Alcohol) and Glycerol Composite Films with Citric Acid Cross-Linking Mechanism: A Green Approach to High-Performance Packaging Materials

  • Open Access

    ARTICLE

    Surrogate-Based Dimensional Optimization of a Polymeric Roller for Ore Belt Conveyors Considering Viscoelastic Effects

    Rafiq Said Dias Jabour, Marco Antonio Luersen*, Euclides Alexandre Bernardelli

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072266 - 12 January 2026

    Abstract The roller is one of the fundamental elements of ore belt conveyor systems since it supports, guides, and directs material on the belt. This component comprises a body (the external tube) that rotates around a fixed shaft supported by easels. The external tube and shaft of rollers used in ore conveyor belts are mostly made of steel, resulting in high mass, hindering maintenance and replacement. Aiming to achieve mass reduction, we conducted a structural optimization of a roller with a polymeric external tube (hereafter referred to as a polymeric roller), seeking the optimal values for… More >

  • Open Access

    PROCEEDINGS

    Spatio-Temporal Prediction of Curing-Induced Deformation for Composite Structures Using a Hybrid CNN-LSTM and Finite Element Approach

    Xiangru He1, Ying Deng1, Zefu Li1, Jie Zhi1,2, Yonglin Chen1,2, Weidong Yang1,2,3,*, Yan Li1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012395

    Abstract Coordinated control of structural accuracy and mechanical properties is the key to composites manufacturing and the prerequisite for aerospace applications. In particular, accurate and efficient prediction of curing-induced deformation (CID) is of vital importance for fiber reinforced polymer composites quality control. In this study, we explored a novel spatio-temporal prediction model, which incorporates the finite element method with a deep learning framework to efficiently forecast the curing-induced deformation evolution of composite structures. Herein, we developed an integrated convolutional neural network (CNN) and long short-term memory (LSTM) network approach to capture both the space-distributed and time-resolved… More >

  • Open Access

    PROCEEDINGS

    Rib Design of Fiber-Reinforced Polymer Reinforcement Bars and Study on Stick-Slip Friction at the Concrete Interface

    Quanzhou Yao*, Wenxin Chang, Lin Ye

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011903

    Abstract With the rapid advancement of global infrastructure development and the deepening of sustainable development principles, fiber-reinforced polymer (FRP) reinforcement bars have emerged as an innovative alternative to traditional steel reinforcement due to their lightweight, high-strength, corrosion resistance, and fatigue-resistant properties. However, the practical engineering application of FRP bars in concrete structures still faces critical challenges in optimizing the interfacial bond performance between the reinforcement and concrete. This study addresses the scientific bottleneck in rib height design for FRP bars by systematically investigating the evolution mechanism of fiber strain during the rib-forming process through theoretical analysis… More >

  • Open Access

    ARTICLE

    Effect of Drying Methods on the Morphology and Electrochemical Properties of Cellulose Gel Polymer Electrolytes for Lithium-Ion Batteries

    Jiling Song1, Hua Wang2,*, Jianbing Guo1, Minghua Lin2, Bin Zheng2,*, Jiqiang Wu3,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1143-1157, 2025, DOI:10.32604/jpm.2025.073414 - 26 December 2025

    Abstract The pursuit of safer energy storage systems is driving the development of advanced electrolytes for lithium-ion batteries. Traditional liquid electrolytes pose flammability risks, while solid-state alternatives often suffer from low ionic conductivity. Gel polymer electrolytes (GPEs) emerge as a promising compromise, combining the safety of solids with the ionic conductivity of liquids. Cellulose, an abundant and eco-friendly polymer, presents an ideal base material for sustainable GPEs due to its biocompatibility and mechanical strength. This study systematically investigates how drying methods affect cellulose-based GPEs. Cellulose hydrogels were synthesized through dissolution-crosslinking and processed using vacuum drying (VD),… More >

  • Open Access

    ARTICLE

    Engineering Amorphous Solid Dispersions of Abiraterone Acetate via HPMC HME: A Polymer-Centric Hot-Melt Extrusion Strategy for Formulation-Driven Bioavailability Improvement

    Manisha Choudhari1, Shantanu Damle2, Rajat Vashist1, Ranendra Narayan Saha3, Sunil Kumar Dubey4, Gautam Singhvi1,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1199-1229, 2025, DOI:10.32604/jpm.2025.072987 - 26 December 2025

    Abstract Abiraterone acetate (ABTA) was approved by the USFDA in 2011 for treating metastatic castration-resistant prostate cancer (mCRPC). ABTA exhibits poor aqueous solubility, inadequate dissolution, low oral bioavailability (<10%), and significant positive food effects. To overcome these limitations, in the present work, ABTA solid dispersions (SDs) were developed by using hot melt extrusion technology (HME) with various grades of hydroxypropyl methylcellulose HME (HPMC HME 15LV and 100LV) at different extrusion temperatures. HPMC HME demonstrated the ability to prevent drug precipitation for up to 120 min compared to the free drug (10 min), sustaining the supersaturation state… More > Graphic Abstract

    Engineering Amorphous Solid Dispersions of Abiraterone Acetate via HPMC HME: A Polymer-Centric Hot-Melt Extrusion Strategy for Formulation-Driven Bioavailability Improvement

  • Open Access

    ARTICLE

    Synthesis of Hyperbranched Polyethyleneimine-Propylene Oxide-N-isopropylacrylamide (HPEI-co-PO-co-NIPAM) Terpolymer as a Shale Inhibitor

    Wenjun Hu, Liquan Zhang*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1159-1179, 2025, DOI:10.32604/jpm.2025.072450 - 26 December 2025

    Abstract Addressing the persistent challenge of shale hydration and swelling in water-based drilling fluids (WBDFs), this study developed a smart thermo-responsive shale inhibitor, Hyperbranched Polyethyleneimine-Propylene Oxide-N-isopropylacrylamide (HPN). It was synthesized by grafting hyperbranched polyethyleneimine (HPEI) with propylene oxide (PO) and N-isopropylacrylamide (NIPAM), creating a synergistic hydration barrier through hydrophobic association and temperature-triggered pore plugging. Structural characterization by Fourier-Transform Infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) confirmed the successful formation of the HPN terpolymer, revealing a unique “cationic–nonionic” amphiphilic architecture with temperature-responsive properties. Performance evaluation demonstrated that HPN significantly outperforms conventional inhibitors, including potassium chloride (KCl),… More >

  • Open Access

    ARTICLE

    Tailoring Tribological Behavior of PMMA Using Multi-Component Nanofillers: Insights into Friction, Wear, and Third-Body Flow Dynamics

    Du-Yi Wang1, Shih-Chen Shi1,*, Dieter Rahmadiawan1,2

    Journal of Polymer Materials, Vol.42, No.4, pp. 1075-1095, 2025, DOI:10.32604/jpm.2025.072263 - 26 December 2025

    Abstract Polymethyl methacrylate (PMMA) is widely used in diverse applications such as protective components (e.g., automotive lamp covers and structural casings), optical devices, and biomedical products, owing to its lightweight nature and impact resistance. However, its surface hardness and wear resistance remain insufficient under prolonged exposure to abrasive environments. In this study, a multi-filler strategy with nano-silica (SiO2), brominated lignin (Br-Lignin), and cellulose nanocrystals (CNCs) was employed to enhance PMMA tribological properties. SiO2 provided localized reinforcement, Br-Lignin established stable network structures, and CNCs improved compactness, enabling strong synergistic effects. As a result, the composites achieved up to More >

  • Open Access

    REVIEW

    Polymeric Nanofiber Scaffolds for Diabetic Wound Healing: A Review

    Rafl M. Kamil1, Shaik Nyamathulla1,*, Syed Mahmood1,2,3,4,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 959-992, 2025, DOI:10.32604/jpm.2025.072005 - 26 December 2025

    Abstract With the global diabetes epidemic, diabetic foot ulcers (DFUs) have become a major health burden, affecting approximately 18 million people worldwide each year, and account for about 80% of diabetes-related amputations. Five-year mortality among DFU patients approaches 30%, which is comparable to that of many malignancies. Yet despite standard wound care, only about 30%–40% of chronic DFUs achieve complete healing within 12 weeks. This persistent failure shows that conventional dressings remain passive supports. They do not counteract underlying pathologies such as ischemia, prolonged inflammation, and infection. Recent advances in polymeric nanofiber scaffolds, particularly electrospun matrices,… More > Graphic Abstract

    Polymeric Nanofiber Scaffolds for Diabetic Wound Healing: A Review

  • Open Access

    REVIEW

    Self-Assembly of Active Ingredients in Natural Traditional Chinese Medicine as the Controlled Drug Delivery and Targeted Treatment

    Huaao Jiang#, Bianyifan Xu#, Yang Gui, Ying Xia, Xu Yin, Chao Zhang, Yue Meng, Xin Yu, Yan Wang, Hongmei Xia*

    Journal of Polymer Materials, Vol.42, No.4, pp. 993-1033, 2025, DOI:10.32604/jpm.2025.071740 - 26 December 2025

    Abstract Traditional Chinese medicine (TCM) has a long history and is widely used to prevent and treat various diseases. With the development of modern technology, an increasing number of active ingredients—such as curcumin, berberine, and baicalin—have been identified and validated within TCM. Concurrently, the emergence of nanotechnology has led to the discovery of numerous nanomedicines based on the self-assembly of active ingredients from TCM. Polymer materials can enhance the bioavailability of these active compounds and reduce their toxic side effects. Moreover, compared to synthetic polymers, natural polymer materials offer advantages such as non-toxicity and high biosafety… More >

Displaying 1-10 on page 1 of 343. Per Page