Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    PERSPECTIVE

    The Future of Plasticizers: Biobased and Oligomeric

    Bob A. Howell*

    Journal of Renewable Materials, Vol.12, No.11, pp. 1857-1861, 2024, DOI:10.32604/jrm.2024.056283 - 22 November 2024

    Abstract The deficiencies of popular phthalate plasticizers (ready migration from a polymer matrix into which they have been incorporated, flammability, environmental pollution, human health risks) have stimulated efforts to develop new effective, nonmigrating, low-cost, nontoxic replacements. In the main, these have been based on readily-available, nontoxic biobased precursors. Some, including those prepared from plant oils, have been generated from biomaterials themselves. However, the more numerous and generally more effective have been generated from discrete compounds produced from various biomaterials. Several structural features of effective plasticizers have been recognized. Polar functionality is required to assure compatibility with More >

  • Open Access

    ARTICLE

    Green Chemistry of Cellulose Acetate Membrane Plasticized by Citric Acid and Succinonitrile for Lithium-Ion Battery Application

    Christin Rina Ratri1,2, Qolby Sabrina2, Adam Febriyanto Nugraha1, Sotya Astutiningsih1, Mochamad Chalid1,*

    Journal of Renewable Materials, Vol.12, No.11, pp. 1863-1878, 2024, DOI:10.32604/jrm.2024.055492 - 22 November 2024

    Abstract Commercial lithium-ion batteries (LIBs) use polyolefins as separators. This has led to increased research on separators composed of renewable materials such as cellulose and its derivatives. In this study, the ionic conductivity of cellulose acetate (CA) polymer electrolyte membranes was enhanced via plasticization with citric acid and succinonitrile. The primary objective of this study was to evaluate the effectiveness of these plasticizers in improving cellulose-based separator membranes in LIBs. CA membranes were fabricated using solution casting technique and then plasticized with various concentrations of plasticizers. The structural, thermal, and electrochemical properties of the resulting membranes… More > Graphic Abstract

    Green Chemistry of Cellulose Acetate Membrane Plasticized by Citric Acid and Succinonitrile for Lithium-Ion Battery Application

  • Open Access

    ARTICLE

    The Influence of Chemical Admixtures on the Fluidity, Viscosity and Rheological Properties of Ultra-High Performance Concrete

    Jin Yang1,2, Hailong Zhao1, Jingyi Zeng1, Ying Su1,2, Mengdi Zhu1, Xingyang He1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2163-2181, 2024, DOI:10.32604/fdmp.2024.055448 - 23 September 2024

    Abstract To achieve higher strength and better durability, ultra-high performance concrete (UHPC) typically employs a relatively small water-binder ratio. However, this generally leads to an undesired increase in the paste viscosity. In this study, the effects of liquid and powder polycarboxylate superplasticizers (PCE) on UHPC are compared and critically discussed. Moreover, the following influential factors are considered: air-entraining agents (AE), slump retaining agents (SA), and defoaming agents (DF) and the resulting flow characteristics, mechanical properties, and hydration properties are evaluated assuming UHPC containing 8‰ powder PCE (PCE-based UHPC). It is found that the spread diameter of… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Phenyl Camellia oleifera Seed Oil Ester Plasticizing PVC

    Wenqing Xiao1,#, Yuhang Liu2,#, Yuxin He1, Qiaoguang Li1,*, Yongquan Li3,*

    Journal of Renewable Materials, Vol.12, No.3, pp. 615-628, 2024, DOI:10.32604/jrm.2023.046780 - 11 April 2024

    Abstract Plasticizers are essential additives in the processing of polyvinyl chloride (PVC), with phthalate plasticizers being widely used. However, these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly, necessitating the exploration of eco-friendly bio-based alternatives. In this study, Camellia oleifera seed oil, a specialty resource in China, was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline) (AG-80) to synthesize Phenyl Camellia seed Oil Ester (PCSOE). PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations, with the conventional plasticizer dioctyl phthalate (DOP) serving as a control.… More >

  • Open Access

    ARTICLE

    Plasticizing Effect of Camellia oleifera Seed-Oil-Based Plasticizer on PVC Material Modification

    Qinghua Lao1,#, Hui Zhang1,#, Zhihong Wang2, Puyou Jia3, Yongquan Li1,*, Qiaoguang Li4,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 3025-3041, 2023, DOI:10.32604/jrm.2023.026646 - 05 June 2023

    Abstract In this study, as the plasticizer, Camellia oleifera seed-oil-based cyclohexyl ester (COSOCE) was prepared by the reaction of cyclohexene oxide and refined C. oleifera seed oil (RCOSO) obtained by acidification hydrolysis after saponification. In addition, the structure of the target product was confirmed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and Raman spectroscopy. COSOCE was used as plasticizer-modified polyvinyl chloride (PVC) membranes. The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy (SEM). The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements, universal… More >

  • Open Access

    ARTICLE

    Influence of High-Robustness Polycarboxylate Superplasticizer on the Performances of Concrete Incorporating Fly Ash and Manufactured Sand

    Panpan Cao1,2, Xiulin Huang1,3,*, Shenxu Bao4, Jin Yang5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2041-2051, 2023, DOI:10.32604/fdmp.2023.027399 - 04 April 2023

    Abstract Using ethylene glycol monovinyl polyoxyethylene ether, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and acrylic acid as the main synthetic monomers, a high robustness polycarboxylate superplasticizer was prepared. The effects of initial temperature, ratio of acid to ether, amount of chain transfer agent, and synthesis process on the properties of the superplasticizer were studied. The molecular structure was characterized by GPC (Gel Permeation Chromatography) and IR (Infrared Spectrometer). As shown by the results, when the initial reaction temperature is 15°C, the ratio of acid to ether is 3.4:1 and the acrylic acid pre-neutralization is 15%, The AMPS substitution More > Graphic Abstract

    Influence of High-Robustness Polycarboxylate Superplasticizer on the Performances of Concrete Incorporating Fly Ash and Manufactured Sand

  • Open Access

    ARTICLE

    Phosphorus Containing Rubber Seed oil as a Flame Retardant Plasticizer for Polyvinyl Chloride

    Hongying Chu1,2,*, Huabei Li1,2, Xiaoyan Sun1, Yaowang Zhang1,2

    Journal of Renewable Materials, Vol.11, No.4, pp. 1731-1743, 2023, DOI:10.32604/jrm.2022.024160 - 01 December 2022

    Abstract The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body. Hence, producing functional bio-based plasticizers via exploiting clean and reusable resources meets the satisfaction of current demands. In this study, flame-retardant rubber seed oil-based plasticize (FRP) was prepared via epoxidation reaction and ring opening addition reactions, which was used as a flame-resistant plasticizer for polyvinyl chloride to replace petroleum-based phthalate plasticizer. When DOP was replaced with FRP, the torque of PVC blends increased from 11.4 to 18.4 N⋅m, the LOI value increased from More > Graphic Abstract

    Phosphorus Containing Rubber Seed oil as a Flame Retardant Plasticizer for Polyvinyl Chloride

  • Open Access

    ARTICLE

    Fully Bio-Based Composites of Poly (Lactic Acid) Reinforced with Cellulose-Graft-Poly-(ε-Caprolactone) Copolymers

    Chengtao Gao1,2, Yang Wu3, Haibo Xie1,*

    Journal of Renewable Materials, Vol.11, No.3, pp. 1137-1152, 2023, DOI:10.32604/jrm.2022.021473 - 31 October 2022

    Abstract

    Due to the increasing demand for modified polylactide (PLA) meeting “double green” criteria, the research on sustainable plasticizers for PLA has attracted broad attentions. This study reported an open-ring polymerization method to fabricate cellulose (MCC)-g-PCL (poly (ε-caprolactone)) copolymers with a fully sustainable and biodegradable component. MCC-g-PCL copolymers were synthesized, characterized, and used as green plasticizers for the PLA toughening. The results indicated that the MCC-g-PCL derivatives play an important role in the compatibility, crystallization, and toughening of the PLA/MCC-g-PCL composites. The mechanical properties of the fully bio-based PLA/MCC-g-PCL composites were optimized by adding 15 wt% MCC-g-PCL,

    More > Graphic Abstract

    Fully Bio-Based Composites of Poly (Lactic Acid) Reinforced with Cellulose-Graft-Poly-(ε-Caprolactone) Copolymers

  • Open Access

    ARTICLE

    Study on the Hydration and Physical Properties of Cement by M18 Polycarboxylate Superplasticizer Modified Graphene Oxide

    Dalong Liao, Dongxu Li*, Shun Zhou, Xiaotao Zhang, Ying Fang*

    Journal of Renewable Materials, Vol.11, No.2, pp. 625-641, 2023, DOI:10.32604/jrm.2022.022501 - 22 September 2022

    Abstract Graphene oxide (GO) as a new nano-enhancer in cement-based materials has gained wide attention. However, GO is easy to aggregate in alkaline cement mortar with poor dispersibility. This hinders its application in practical infrastructure construction. In this work, GO-M18 polycarboxylate compound superplasticizer (GM) were obtained by compounding the M18 polycarboxylate superplasticizer with GO solution at different mass ratios. The dispersion of GM in alkaline solution was systematically studied. The phases and functional groups of GM were characterized by XRD and FTIR. The effects of GM on the cement mortar hydration and the formation of microstructure… More > Graphic Abstract

    Study on the Hydration and Physical Properties of Cement by M18 Polycarboxylate Superplasticizer Modified Graphene Oxide

  • Open Access

    ARTICLE

    Improving Polylactide Toughness by Plasticizing with Low Molecular Weight Polylactide-Poly(Butylene Succinate) Copolymer

    Yottha Srithep1,*, Onpreeya Veang-in1, Dutchanee Pholharn2, Lih-Sheng Turng3, John Morris4

    Journal of Renewable Materials, Vol.9, No.7, pp. 1267-1281, 2021, DOI:10.32604/jrm.2021.015604 - 18 March 2021

    Abstract A low-molecular-weight polylactide-poly(butylene succinate) (PLA-PBS) copolymer was synthesized and incorporated into polylactide (PLA) as a novel toughening agent by solvent casting. The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA. The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%. Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy (SEM) images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction (XRD) measurement. The melt flow index (MFI) of the… More >

Displaying 1-10 on page 1 of 21. Per Page