Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Genome-Wide Identification and Functional Characterization of UGT Gene Family in Sorghum bicolor with Insights into SbUGT12’s Role in C4 Photosynthesis

    Wenxiang Zhang1,2, Wenning Cui1, Juan Huang3, Zhangen Lu1, Kuijing Liang1, Lingbao Wang1,2, Shanshan Wei1,2, Liran Shi1, Huifen Li1, Xiaoli Guo1,2,*, Jianhui Ma4,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3893-3912, 2025, DOI:10.32604/phyton.2025.073736 - 29 December 2025

    Abstract UDP-glycosyltransferases (UGTs) play essential roles in plant secondary metabolism and stress responses, yet their composition and functions in Sorghum bicolor, a model C4 plant, remain inadequately characterized. This study identified 196 SbUGT genes distributed across all 10 chromosomes and classified them into 16 subfamilies (A–P) through phylogenetic analysis. Among these, 61.2% were intronless, and 10 conserved motifs, including the UGT-specific PSPG box, were identified. Synteny analysis using MCScanX revealed 12 segmental duplication events and conserved syntenic relationships with other Poaceae species (rice, maize, and barley). Promoter analysis uncovered 125 distinct cis-acting elements, predominantly associated with stress and… More >

  • Open Access

    ARTICLE

    Synergistic Effects of Melatonin and Methyl Jasmonate in Mitigating Drought-Induced Oxidative Stress in Common Bean (Phaseolus vulgaris)

    Totan Kumar Ghosh1, Md. Roushonuzzaman Rakib1, Munna1, S. M. Zubair AL-Meraj1, Md. Moshiul Islam2, Anika Nazran1, Mohammad Golam Mostofa3,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3925-3943, 2025, DOI:10.32604/phyton.2025.073382 - 29 December 2025

    Abstract The productivity of common bean (Phaseolus vulgaris L.), an economically important legume, is severely hindered by drought stress. While melatonin (Mel) and methyl jasmonate (MeJA) are known to alleviate abiotic stresses, their combined effects in mitigating drought-induced oxidative stress are unknown. Here, we examined the synergistic effects of Mel and MeJA in alleviating drought-associated oxidative damage in common bean. Compared with well-watered controls, drought stress caused a significant decline in plant biomass, photosynthetic pigments, and photosystem II efficiency (Fv/Fm). Drought also significantly increased hydrogen peroxide (H2O2) accumulation, which likely contributed to membrane lipid peroxidation, as indicated by… More >

  • Open Access

    ARTICLE

    Zinc Oxide Nanoparticle Alleviates the Inhibition of Dendrobium huoshanense Photosynthesis by Cadmium through Enhancing Antioxidant Enzyme System

    Cheng Song1,*, Iftikhar Hussein Shah2, Ghulam Abbas Ashraf3, Muhammad Arif4, Muhammad Aamir Manzoor1,5,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3427-3451, 2025, DOI:10.32604/phyton.2025.070778 - 01 December 2025

    Abstract Heavy metal pollution has become a pervasive environmental issue affecting numerous regions worldwide. Recently, there has been significant attention given to the application of nano-enabled technologies with the purpose of enhancing plant development and alleviating heavy metal stress. This study aimed to illustrate the potential of zinc oxide nanoparticles (ZnO-NPs) to enhance the morphological traits of D. huoshenense exposed to cadmium (Cd) stress. The chemical structure and elemental composition of the ZnO-NPs were characterised by a series of analytical methods, including X-ray diffraction, UV-Vis spectrometry, XPS, and TEM. Plant samples used were collected at 0, 5,… More > Graphic Abstract

    Zinc Oxide Nanoparticle Alleviates the Inhibition of <i>Dendrobium huoshanense</i> Photosynthesis by Cadmium through Enhancing Antioxidant Enzyme System

  • Open Access

    ARTICLE

    Synergistic Regulation of Light Intensity and Calcium Nutrition in PFAL-Grown Lettuce by Optimizing Morphogenesis and Nutrient Homeostasis

    Jie Jin1, Tianci Wang1, Yaning Wang1, Jingqi Yao2, Jinxiu Song1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3611-3632, 2025, DOI:10.32604/phyton.2025.070680 - 01 December 2025

    Abstract In plant factory with artificial lighting, precise regulation of environmental and nutritional factors is essential to optimize both growth and quality of leafy vegetables. This study systematically evaluated the combined effects of light intensity (150, 200, 250 μmol/(m2·s)) and calcium supply in the nutrient solution (0.5, 1.0, 1.5 mmol/L) on lettuce morphology, photosynthesis, quality indices, and tipburn incidence. Elevating light from 150 to 200 μmol/(m2·s) significantly enhanced leaf number, area, photosynthetic rate, biomass, and foliar calcium. These gains plateaued at 250 μmol/(m2·s), where tipburn incidence surged to 76.5%. Photosynthetic pigments progressively rose with light intensity. Calcium supply… More >

  • Open Access

    ARTICLE

    Citric Acid Optimizes Lead (Pb) Phytoextraction in Mung Bean (Vigna radiata (L.) Wilczek) by Regulating Nutrient Uptake and Photosynthesis

    Hafiza Saima Gul1,2,*, Mumtaz Hussain1, Tayyaba Sanaullah3, Habib-ur-Rehman Athar2, Ibrahim Al-Ashkar4, Muhammad Kamran5, Mohammed Antar6, Ayman El Sabagh7,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2893-2909, 2025, DOI:10.32604/phyton.2025.058816 - 30 September 2025

    Abstract The low efficiency of phytoextraction of lead (Pb) from agricultural fields poses a significant agricultural challenge. Organic chelating agents can influence Pb bioavailability in soil, affecting its uptake, transport, and toxicity in plants. This study aimed to assess the impact of citric acid (CA) and diethylenetriaminepentaacetic acid (DTPA) on chelate-assisted phytoextraction of Pb and its effect on growth and physiology of two cultivars (07001; 07002) of mung bean (Vigna radiata). The cultivars of mung bean were exposed to 60 mg·L−1 lead chloride (PbCl2) solution, with or without the addition of 300 mg·L−1 CA or 500 mg·L−1 DTPA, until… More >

  • Open Access

    ARTICLE

    Grain Photosynthesis and Filling Characteristics of Rice Varieties with Different Grain Weights

    Jinge Li1,2, Chuyao Wang1,2, Fangbo Cao1,2, Min Huang1,2,*, Jiana Chen1,2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 2155-2165, 2025, DOI:10.32604/phyton.2025.066940 - 31 July 2025

    Abstract Grain filling is a critical determinant of yield and quality in rice. This study aims to clarify the association between grain photosynthesis and the filling rate of rice varieties with different grain weights, providing a theoretical foundation for optimizing grain-filling processes. Two rice varieties with similar growth duration but different grain weights were selected: a large-grain variety, Lingliangyou 268 (L268), and a small-grain variety, Ruiliangyou 1053 (R1053). Differences in grain filling, grain photosynthetic rate, and grain chlorophyll content were systematically examined during the filling stage. Results showed significant differences in grain-filling, grain photosynthetic rate, and… More >

  • Open Access

    ARTICLE

    Leaf Position on the Sunflower Stem Determines Physiological Condition during Flowering

    Antonela Markulj Kulundžić1,*, Daniela Horvat2, Marija Kovačević Babić2, Anto Mijić1, Aleksandra Sudarić1, Maja Matoša Kočar1, Tomislav Duvnjak1, Ivica Liović1, Ivana Varga3, Marija Viljevac Vuletić2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 2075-2095, 2025, DOI:10.32604/phyton.2025.065961 - 31 July 2025

    Abstract Sunflower leaf photosynthesis strongly depends on the leaf position in the plant stem conditioning, which directly affects other physiological processes. Therefore, a study of the leaf’s physiological status regarding the leaf position in the stem was performed on sunflowers in the flowering stage. Eight differently positioned leaves were investigated, starting with the youngest leaf on the top of the stem to the leaves of the stem bottom, assigned as the oldest senescent leaves. According to chlorophyll fluorescence (ChlF) parameters connected to photosystem II (PSII) processes, significant changes in PSII functioning occurred only in the senescent… More >

  • Open Access

    ARTICLE

    Exogenous Alpha-Ketoglutarate (AKG) Modulate Physiological Characteristics, Photosynthesis, Secondary Metabolism and Antioxidant Defense System in Peganum Harmala L. under Nickel Stress

    Marwa Rezgui1,#,*, Wided Ben Ammar1, Muhammad Nazim2,3,#, Walid Soufan4, Chiraz Chaffei Haouari1

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 137-155, 2025, DOI:10.32604/phyton.2025.058851 - 24 January 2025

    Abstract Nickel (Ni) toxicity significantly impairs plant growth, photosynthesis, and metabolism by inducing oxidative stress. This study evaluates the potential of exogenous Alpha-Ketoglutarate (AKG) in mitigating Ni-induced stress in Peganum harmala L. Seedlings were exposed to 0, 200, 500, and 750 μM NiCl2, with or without AKG supplementation. Under 750 μM Ni stress, dry weight (DW) decreased by 33.7%, tissue water content (TWC) by 39.9%, and chlorophyll a and total chlorophyll levels were reduced by 17% and 15%, respectively. Ni exposure also significantly increased secondary metabolite production, with leaf anthocyanin content rising by 131%, and superoxide dismutase (SOD)… More >

  • Open Access

    ARTICLE

    Mycorrhizal Synthesis and Physiological Responses of Entoloma clypeatum and Three Rosaceae Fruit Trees

    Chen Hao, Chunfeng Mu, Xinyan Yu, Xiaoran Chen, Mengmeng Zhu, Jianrui Wang*, Yu Liu*

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3549-3572, 2024, DOI:10.32604/phyton.2024.056114 - 31 December 2024

    Abstract Entoloma clypeatum, a kind of edible ectomycorrhizal fungus, can be usually symbiotic with Rosaceae fruit trees. Fruit trees have become an important part of China’s agriculture. The present work focused on exploring how E. clypeatum affected symbiotic Rosaceae plants and establishing a symbiotic culture with Malus robusta, Pyrus betulifolia and Prunus armeniaca rootstocks. The results showed that E. clypeatum and three Rosaceae plants can generate cylindrical or clavate mycorrhizae. The inoculation treatment had different degrees of positive effects on the three plants. Relative to the non-inoculated group, biomass in symbiotic plants increased (32.8%–191.1%), and photosynthesis enhanced. In the level of… More >

  • Open Access

    ARTICLE

    The Developmental and Physiological Traits of Rare and Threatened Moss Physcomitrium eurystomum Sendtn. (Funariaceae) Valuable for Its Conservation

    Djordje P. Božović1,2, Anja Rimac3, Milorad M. Vujičić1,4, Pragya Singh5, Michal Goga5, Mingai Li2,6, Claudio Varotto2,6, Aneta D. Sabovljević1,4, Marko S. Sabovljević1,4,5,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2949-2961, 2024, DOI:10.32604/phyton.2024.057995 - 30 November 2024

    Abstract Physcomitrium eurystomum Sendtn. is a very rare European ephemeral funaroid moss. The entire European population of this species is considered threatened and it is red-listed in many regions and countries. In addition to being recognized as threatened and included in nature conservation legislation, it also requires active protection measures. This study aims to contribute to effective conservation practices for P. eurystomum. Different conservation physiology tests were carried out to propagate this species to achieve a reliable procedure for biomass production and the potential reintroduction of germplasm. Ex situ tests, both in vitro and ex vitro, were carried out to determine… More >

Displaying 1-10 on page 1 of 43. Per Page