Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    PROCEEDINGS

    High-Temperature Fracture Behavior and Toughening Mechanisms of PIP-C/SiC Composites: An Integrated Experimental and Phase-Field Study

    Kunjie Wang, Chenghai Xu*, Xinliang Zhao, Songhe Meng

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011534

    Abstract Considering the high-temperature application environment and quasi-brittle characteristics, the high-temperature fracture toughness of C/SiC composites is of great significance for the safety application of components in service.
    In this work, the fracture toughness of PIP-C/SiC composites at 25–1600 ℃ in inert atmosphere was tested. The test results show that the fracture toughness and modes of C/SiC composites have significant temperature dependence and difference in in-plane and out-of-plane orientations. With the rising of temperature, the carrying capacity and KIC of C/SiC composites increase first and then decrease, and an inflection point occurs near the fabrication temperature.… More >

  • Open Access

    ARTICLE

    Pore Pressure Evolution and F-T Fatigue of Concrete: A Coupled THM-F Phase-Field Modeling Approach

    Siwei Zhang, Xiaozhou Xia*, Xin Gu, Meilin Zong, Qing Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3243-3278, 2025, DOI:10.32604/cmes.2025.073841 - 23 December 2025

    Abstract This study presents a coupled thermo-hydro-mechanical-fatigue (THM-F) model, developed based on variational phase-field fatigue theory, to simulate the freeze-thaw (F-T) damage process in concrete. The fracture phase-field model incorporates the F-T fatigue mechanism driven by energy dissipation during the free energy growth stage. Using microscopic inclusion theory, we derive an evolution model of pore size distribution (PSD) for concrete under F-T cycles by treating pore water as columnar inclusions. Drawing upon pore ice crystal theory, calculation models that account for concrete PSD characteristics are established to determine ice saturation, permeability coefficient, and pore pressure. To… More >

  • Open Access

    ARTICLE

    Fracture Modeling of Viscoelastic Behavior of Solid Propellants Based on Accelerated Phase-Field Model

    Yuan Mei1,2, Daokui Li1,2, Shiming Zhou1,2,*, Zhibin Shen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 153-187, 2025, DOI:10.32604/cmes.2025.070252 - 30 October 2025

    Abstract Viscoelastic solids, such as composite propellants, exhibit significant time and rate dependencies, and their fracture processes display high levels of nonlinearity. However, the correlation between crack propagation and viscoelastic energy dissipation in these materials remains unclear. Therefore, accurately modeling and understanding of their fracture behavior is crucial for relevant engineering applications. This study proposes a novel viscoelastic phase-field model. In the numerical implementation, the adopted adaptive time-stepping iterative strategy effectively accelerates the coupling iteration efficiency between the phase-field and the displacement field. Moreover, all unknown parameters in the model, including the form of the phase-field More >

  • Open Access

    ARTICLE

    A Simple and Robust Mesh Refinement Implementation in Abaqus for Phase Field Modelling of Brittle Fracture

    Anshul Pandey, Sachin Kumar*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3251-3286, 2025, DOI:10.32604/cmes.2025.067858 - 30 September 2025

    Abstract The phase field model can coherently address the relatively complex fracture phenomenon, such as crack nucleation, branching, deflection, etc. The model has been extensively implemented in the finite element package Abaqus to solve brittle fracture problems in recent studies. However, accurate numerical analysis typically requires fine meshes to model the evolving crack path effectively. A broad region must be discretized without prior knowledge of the crack path, further augmenting the computational expenses. In this proposed work, we present an automated framework utilizing a posteriori error-indicator (MISESERI) to demarcate and sufficiently refine the mesh along the… More >

  • Open Access

    ARTICLE

    Modeling of Thermal Shock-Induced Fracture Propagation Based on Phase-Field Approach

    Zhuang Liu1,*, Tingen Fan1, Qianli Lu2, Jianchun Guo2, Renfeng Yang1, Haifeng Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 851-876, 2025, DOI:10.32604/fdmp.2024.056729 - 06 May 2025

    Abstract Thermal shock damage in deep shale hydraulic fracturing can impact fracture propagation behaviors, potentially leading to the formation of complex fractures and enhancing gas recovery. This study introduces a thermal-hydraulic-mechnical (THM) coupled fracture propagation model relying on the phase field method to simulate thermal shock-induced fracturing in the deep shale considering dynamic temperature conditions. The validity of this model is confirmed through comparison of experimental and numerical results concerning the THM-coupled stress field and thermal cracking. Special attention is paid to the interaction of thermal shock-induced fractures in deep shale that contains weak planes. More >

  • Open Access

    ARTICLE

    Study on the Dynamic Mechanical Damage Behavior of Concrete Based on the Phase-Field Model

    Zhishui Sheng1, Hong Jiang1, Gang Liu2, Fulai Zhang3, Wei Zhang3,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 531-548, 2025, DOI:10.32604/sdhm.2024.059662 - 03 April 2025

    Abstract Concrete materials are employed extensively in a variety of large-scale structures due to their economic viability and superior mechanical properties. During the service life of concrete structures, they are inevitably subjected to damage from impact loading from natural disasters, such as earthquakes and storms. In recent years, the phase-field model has demonstrated exceptional capability in predicting the stochastic initiation, propagation, and bifurcation of cracks in materials. This study employs a phase-field model to focus on the rate dependency and failure response of concrete under impact deformation. A viscosity coefficient is introduced within the phase-field model… More >

  • Open Access

    REVIEW

    A Review of the Numerical Methods for Diblock Copolymer Melts

    Youngjin Hwang, Seungyoon Kang, Junseok Kim*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1811-1838, 2025, DOI:10.32604/cmc.2025.061071 - 17 February 2025

    Abstract This review paper provides a comprehensive introduction to various numerical methods for the phase-field model used to simulate the phase separation dynamics of diblock copolymer melts. Diblock copolymer systems form complex structures at the nanometer scale and play a significant role in various applications. The phase-field model, in particular, is essential for describing the formation and evolution of these structures and is widely used as a tool to effectively predict the movement of phase boundaries and the distribution of phases over time. In this paper, we discuss the principles and implementations of various numerical methodologies More >

  • Open Access

    PROCEEDINGS

    A Thermodynamically Consistent Phase-Field-Micromechanics Model of Solid-State Sintering with Coupled Diffusion and Diffusion-Induced Shrinkage

    Qingcheng Yang1,*, Arkadz Kirshtein2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011229

    Abstract Sintering is a pivotal technology for processing ceramic and metallic powders into solid objects. A profound understanding of microstructure evolution during sintering is essential for manufacturing products with tailored properties. While various phase-field models have been proposed to simulate microstructure evolution in solid-state sintering, correctly incorporating the densification assumption—where particles move toward each other by rigid body motion—remains a challenge. The fundamental obstacle lies in the ad hoc treatment of particle motion, where the thermodynamical driving force cannot be derived from the system's free energy. In this work, we present a novel phase-field micromechanics model More >

  • Open Access

    PROCEEDINGS

    Integrated Multiscale Unified Phase-Field Modellings (UPFM)

    Yuhong Zhao1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012951

    Abstract For a long time, the phase-field method has been considered as a mesoscale phenomenological method lacking physical accuracy and unable to be associated with the mechanical/functional properties of materials, etc. Some misunderstandings existing in these viewpoints need to be clarified. Therefore, it is necessary to propose or adopt the perspective of “unified or unifying phase-field modeling (UPFM)” to address these issues, which means that phase-field modeling has multiple unifications. Specifically, the phase-field method is the perfect unity of thermodynamics and kinetics, the unity of multi-scale models from micro- to meso- and then to macroscopic scale, More >

  • Open Access

    ARTICLE

    Paraelectric Doping Simultaneously Improves the Field Frequency Adaptability and Dielectric Properties of Ferroelectric Materials: A Phase-Field Study

    Zhi Wang1, Jinming Cao1, Zhonglei Liu1, Yuhong Zhao1,2,3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 213-228, 2024, DOI:10.32604/cmc.2024.055169 - 15 October 2024

    Abstract Recent years, the polarization response of ferroelectrics has been entirely studied. However, it is found that the polarization may disappear gradually with the continually applied of electric field. In this paper, taking K0.48Na0.52NbO3(KNN) as an example, it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods. The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency, the maximum polarization disappeared at high frequencies, and the hysteresis loop became elliptical. In More >

Displaying 1-10 on page 1 of 27. Per Page