Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (714)
  • Open Access

    REVIEW

    A Systematic Review and Performance Evaluation of Open-Source Tools for Smart Contract Vulnerability Detection

    Yaqiong He, Jinlin Fan*, Huaiguang Wu

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 995-1032, 2024, DOI:10.32604/cmc.2024.052887

    Abstract With the rise of blockchain technology, the security issues of smart contracts have become increasingly critical. Despite the availability of numerous smart contract vulnerability detection tools, many face challenges such as slow updates, usability issues, and limited installation methods. These challenges hinder the adoption and practicality of these tools. This paper examines smart contract vulnerability detection tools from 2016 to 2023, sourced from the Web of Science (WOS) and Google Scholar. By systematically collecting, screening, and synthesizing relevant research, 38 open-source tools that provide installation methods were selected for further investigation. From a developer’s perspective,… More >

  • Open Access

    ARTICLE

    Refined Anam-Net: Lightweight Deep Learning Model for Improved Segmentation Performance of Optic Cup and Disc for Glaucoma Diagnosis

    Khursheed Aurangzeb*, Syed Irtaza Haider, Musaed Alhussein

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1381-1405, 2024, DOI:10.32604/cmc.2024.048987

    Abstract In this work, we aim to introduce some modifications to the Anam-Net deep neural network (DNN) model for segmenting optic cup (OC) and optic disc (OD) in retinal fundus images to estimate the cup-to-disc ratio (CDR). The CDR is a reliable measure for the early diagnosis of Glaucoma. In this study, we developed a lightweight DNN model for OC and OD segmentation in retinal fundus images. Our DNN model is based on modifications to Anam-Net, incorporating an anamorphic depth embedding block. To reduce computational complexity, we employ a fixed filter size for all convolution layers… More >

  • Open Access

    ARTICLE

    Thermodynamic Performance Analysis of Geothermal Power Plant Based on Organic Rankine Cycle (ORC) Using Mixture of Pure Working Fluids

    Abdul Sattar Laghari1, Mohammad Waqas Chandio1, Laveet Kumar2,*, Mamdouh El Haj Assad3

    Energy Engineering, Vol.121, No.8, pp. 2023-2038, 2024, DOI:10.32604/ee.2024.051082

    Abstract The selection of working fluid significantly impacts the geothermal ORC’s Efficiency. Using a mixture as a working fluid is a strategy to improve the output of geothermal ORC. In the current study, modelling and thermodynamic analysis of ORC, using geothermal as a heat source, is carried out at fixed operating conditions. The model is simulated in the Engineering Equation Solver (EES). An environment-friendly mixture of fluids, i.e., R245fa/R600a, with a suitable mole fraction, is used as the operating fluid. The mixture provided the most convenient results compared to the pure working fluid under fixed operating More >

  • Open Access

    ARTICLE

    Study of Hygrothermal Behavior of Bio-Sourced Material Treated Ecologically for Improving Thermal Performance of Buildings

    Soumia Mounir1,2,*, Miloudia Slaoui2, Youssef Maaloufa1,2, Fatima Zohra El Wardi2,3, Yakubu Aminu Dodo4,5, Sara Ibn-Elhaj2, Abdelhamid Khabbazi2

    Journal of Renewable Materials, Vol.12, No.5, pp. 1007-1027, 2024, DOI:10.32604/jrm.2024.049392

    Abstract Creating sustainable cities is the only way to live in a clean environment, and this problem can be solved by using bio-sourced and recycled materials. For this purpose, the authors contribute to the valuation of sheep wool waste as an eco-friendly material to be used in insulation. The paper investigates the thermal, hygrothermal, and biological aspects of sheep wool by testing a traditional treatment. The biological method of aerobic mesophilic flora has been applied. Fluorescence X was used to determine the chemical composition of the materials used. Also, thermal characterization has been conducted. The thermal… More >

  • Open Access

    ARTICLE

    Performance Analysis of Plant Shells/PVC Composites under Corrosion and Aging Conditions

    Haoping Yao1, Xinyu Zhong2, Chunxia He1,*

    Journal of Renewable Materials, Vol.12, No.5, pp. 993-1006, 2024, DOI:10.32604/jrm.2024.047758

    Abstract To make full use of plant shell fibers (rice husk, walnut shell, chestnut shell), three kinds of wood-plastic composites of plant shell fibers and polyvinyl chloride (PVC) were prepared. X-ray diffraction analysis was carried out on three kinds of plant shell fibers to test their crystallinity. The aging process of the composites was conducted under 2 different conditions. One was artificial seawater immersion and xenon lamp irradiation, and the other one was deionized water spray and xenon lamp irradiation. The mechanical properties (tensile strength, flexural strength, impact strength), changes in color, water absorption, Fourier transform… More >

  • Open Access

    ARTICLE

    Deep Learning: A Theoretical Framework with Applications in Cyberattack Detection

    Kaveh Heidary*

    Journal on Artificial Intelligence, Vol.6, pp. 153-175, 2024, DOI:10.32604/jai.2024.050563

    Abstract This paper provides a detailed mathematical model governing the operation of feedforward neural networks (FFNN) and derives the backpropagation formulation utilized in the training process. Network protection systems must ensure secure access to the Internet, reliability of network services, consistency of applications, safeguarding of stored information, and data integrity while in transit across networks. The paper reports on the application of neural networks (NN) and deep learning (DL) analytics to the detection of network traffic anomalies, including network intrusions, and the timely prevention and mitigation of cyberattacks. Among the most prevalent cyber threats are R2L,… More >

  • Open Access

    ARTICLE

    Impacts of Using AlO Nano Particle to Compressor Oil on Performance of Automobile Air Conditioning System

    Karam H. Mohammed1, Ashraf E. Al-Mirani1, Bashar Mahmood Ali2, Omar Rafae Alomar1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 839-854, 2024, DOI:10.32604/fhmt.2024.052671

    Abstract This work involves an experimental study on the performance of automobile air-conditioning systems by adding AlO nanoparticles to oil compressors to investigate their impacts on the enhancement of the speed cooling of refrigeration systems and to compare it with the system operated using only oil. The AlO nanoparticles have been added to the oil compressor for different ranges of mass concentration (Ø = 0.1%, Ø = 0.15% and Ø = 0.2%). The stability of AlO nanoparticles has been tested by direct observation for different time periods. The results indicated that the air conditioning system that More >

  • Open Access

    ARTICLE

    Performance Study of Dynamic Intake and Exhaust Façades in Hot and Dry Climates: Iraq Case Study

    S. M. Hosseinalipour*, S. Asiaei*, Ammar A. Hussain Al-Taee

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 747-767, 2024, DOI:10.32604/fhmt.2024.051541

    Abstract This paper is part of a series addressing the urgent need for effective technologies to reduce energy demand and mitigate climate impact. This study focused on the implementation and development of dynamic insulation technology for a sustainable and energy-efficient future in the region, especially in Iraq. The study assessed the energy efficiency of dynamic insulation technology by analyzing three wall models (static, dynamic, and modified) during the winter season. This paper expands the analysis to include a hot, dry summer scenario, providing valuable insights into the year-round performance of dynamic walls and enabling sustainable and More >

  • Open Access

    ARTICLE

    Experimental Study on Improving Performance and Productivity of Pyramid Solar Still Using Rotation Technique

    Ali Abdullah Abbas Baiee, Sasan Asiaei*, Sayed Mostafa Hosseinalipour*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 955-976, 2024, DOI:10.32604/fhmt.2024.051532

    Abstract Globally, potable water scarcity is pervasive problem. The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water. The experimental study is distinctive due to the implementation of a rotational mechanism within the pyramidal solar still (PSS), which serves to enhance the evaporation and condensation processes. The objective of this research study is to examine the impact of integrating rotational motion into pyramidal solar stills on various processes: water distillation, evaporation, condensation, heat transfer, and energy waste reduction, shadow effects, and low water temperature in saline… More >

  • Open Access

    ARTICLE

    Finite Element Analysis for Magneto-Convection Heat Transfer Performance in Vertical Wavy Surface Enclosure: Fin Size Impact

    Md. Fayz-Al-Asad1,4, F. Mebarek-Oudina2,*, H. Vaidya3, Md. Shamim Hasan4, Md. Manirul Alam Sarker4, A. I. Ismail5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 817-837, 2024, DOI:10.32604/fhmt.2024.050814

    Abstract The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottom wall. We use a finite element method based on Galerkin weighted residual (GWR) techniques to set up the appropriate governing equations for the present flow model. We have conducted a parametric investigation to examine the impact of Hartmann and Richardson numbers on the flow pattern and heat transmission features inside a wavy cavity. We graphically represent the numerical results, such as isotherms, streamlines, velocity profiles,… More >

Displaying 1-10 on page 1 of 714. Per Page