Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Optimal Load Forecasting Model for Peer-to-Peer Energy Trading in Smart Grids

    Lijo Jacob Varghese1, K. Dhayalini2, Suma Sira Jacob3, Ihsan Ali4,*, Abdelzahir Abdelmaboud5, Taiseer Abdalla Elfadil Eisa6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1053-1067, 2022, DOI:10.32604/cmc.2022.019435 - 07 September 2021

    Abstract Peer-to-Peer (P2P) electricity trading is a significant research area that offers maximum fulfilment for both prosumer and consumer. It also decreases the quantity of line loss incurred in Smart Grid (SG). But, uncertainities in demand and supply of the electricity might lead to instability in P2P market for both prosumer and consumer. In recent times, numerous Machine Learning (ML)-enabled load predictive techniques have been developed, while most of the existing studies did not consider its implicit features, optimal parameter selection, and prediction stability. In order to overcome fulfill this research gap, the current research paper… More >

  • Open Access

    ARTICLE

    A Neural Network-Based Trust Management System for Edge Devices in Peer-to-Peer Networks

    Alanoud Alhussain1, Heba Kurdi1,*, Lina Altoaimy2

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 805-815, 2019, DOI:10.32604/cmc.2019.05848

    Abstract Edge devices in Internet of Things (IoT) applications can form peers to communicate in peer-to-peer (P2P) networks over P2P protocols. Using P2P networks ensures scalability and removes the need for centralized management. However, due to the open nature of P2P networks, they often suffer from the existence of malicious peers, especially malicious peers that unite in groups to raise each other's ratings. This compromises users' safety and makes them lose their confidence about the files or services they are receiving. To address these challenges, we propose a neural network-based algorithm, which uses the advantages of More >

Displaying 1-10 on page 1 of 2. Per Page