Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Densely Convolutional BU-NET Framework for Breast Multi-Organ Cancer Nuclei Segmentation through Histopathological Slides and Classification Using Optimized Features

    Amjad Rehman1, Muhammad Mujahid1, Robertas Damasevicius2,*, Faten S Alamri3, Tanzila Saba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2375-2397, 2024, DOI:10.32604/cmes.2024.056937 - 31 October 2024

    Abstract This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei. This is crucial for histopathological image analysis, as it involves segmenting cell nuclei. However, challenges exist, such as determining the boundary region of normal and deformed nuclei and identifying small, irregular nuclei structures. Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification, but their complex features limit their practical use in clinical settings. The existing studies have limited accuracy, significant processing costs, and a lack of resilience and generalizability across diverse datasets. We… More >

  • Open Access

    RETRACTION

  • Open Access

    ARTICLE

    Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images

    Prasanalakshmi Balaji1,*, Omar Alqahtani1, Sangita Babu2, Mousmi Ajay Chaurasia3, Shanmugapriya Prakasam4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 443-458, 2024, DOI:10.32604/cmes.2024.053158 - 20 August 2024

    Abstract Breast cancer is a significant threat to the global population, affecting not only women but also a threat to the entire population. With recent advancements in digital pathology, Eosin and hematoxylin images provide enhanced clarity in examining microscopic features of breast tissues based on their staining properties. Early cancer detection facilitates the quickening of the therapeutic process, thereby increasing survival rates. The analysis made by medical professionals, especially pathologists, is time-consuming and challenging, and there arises a need for automated breast cancer detection systems. The upcoming artificial intelligence platforms, especially deep learning models, play an More >

  • Open Access

    ARTICLE

    Using MsfNet to Predict the ISUP Grade of Renal Clear Cell Carcinoma in Digital Pathology Images

    Kun Yang1,2,3, Shilong Chang1, Yucheng Wang1, Minghui Wang1, Jiahui Yang1, Shuang Liu1,2,3, Kun Liu1,2,3, Linyan Xue1,2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 393-410, 2024, DOI:10.32604/cmc.2023.044994 - 30 January 2024

    Abstract Clear cell renal cell carcinoma (ccRCC) represents the most frequent form of renal cell carcinoma (RCC), and accurate International Society of Urological Pathology (ISUP) grading is crucial for prognosis and treatment selection. This study presents a new deep network called Multi-scale Fusion Network (MsfNet), which aims to enhance the automatic ISUP grade of ccRCC with digital histopathology pathology images. The MsfNet overcomes the limitations of traditional ResNet50 by multi-scale information fusion and dynamic allocation of channel quantity. The model was trained and tested using 90 Hematoxylin and Eosin (H&E) stained whole slide images (WSIs), which… More >

  • Open Access

    ARTICLE

    Nuclei Segmentation in Histopathology Images Using Structure-Preserving Color Normalization Based Ensemble Deep Learning Frameworks

    Manas Ranjan Prusty1, Rishi Dinesh2, Hariket Sukesh Kumar Sheth2, Alapati Lakshmi Viswanath2, Sandeep Kumar Satapathy2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3077-3094, 2023, DOI:10.32604/cmc.2023.042718 - 26 December 2023

    Abstract This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin (H&E) stained histopathology images. The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols, as well as the segmentation of variable-sized and overlapping nuclei. To this extent, the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks (CNN) architectures as encoder backbones, along with stain normalization and test time… More >

  • Open Access

    ARTICLE

    Recognizing Breast Cancer Using Edge-Weighted Texture Features of Histopathology Images

    Arslan Akram1,2, Javed Rashid2,3,4, Fahima Hajjej5, Sobia Yaqoob1,6, Muhammad Hamid7, Asma Irshad8, Nadeem Sarwar9,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1081-1101, 2023, DOI:10.32604/cmc.2023.041558 - 31 October 2023

    Abstract Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes necessitate both early detection and an accurate diagnosis. Histological images are routinely utilized in the process of diagnosing breast cancer. Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels. No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer. A strategy for detecting breast cancer is provided in the context of this investigation. Histopathology image texture data is used with the wavelet transform in this… More >

  • Open Access

    ARTICLE

    An Improved Fully Automated Breast Cancer Detection and Classification System

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 731-751, 2023, DOI:10.32604/cmc.2023.039433 - 08 June 2023

    Abstract More than 500,000 patients are diagnosed with breast cancer annually. Authorities worldwide reported a death rate of 11.6% in 2018. Breast tumors are considered a fatal disease and primarily affect middle-aged women. Various approaches to identify and classify the disease using different technologies, such as deep learning and image segmentation, have been developed. Some of these methods reach 99% accuracy. However, boosting accuracy remains highly important as patients’ lives depend on early diagnosis and specified treatment plans. This paper presents a fully computerized method to detect and categorize tumor masses in the breast using two… More >

  • Open Access

    REVIEW

    Roles of miR-214 in bone physiology and disease

    LAKSHANA SADU#, R.HARI KRISHNAN#, R.L. AKSHAYA, I. SARANYA, UDIPT RANJAN DAS, SNEHA SATISHKUMAR, N. SELVAMURUGAN*

    BIOCELL, Vol.47, No.4, pp. 751-760, 2023, DOI:10.32604/biocell.2023.026911 - 08 March 2023

    Abstract MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate the expression of their target mRNAs post-transcriptionally. Since their discovery, thousands of highly conserved miRNAs have been identified and investigated for their role in human health and diseases. MiR-214 has been increasingly reported to have an association with the regulation of bone metabolism. Reports suggested that miR-214 controls the critical aspects of osteoblasts (bone-forming cells), including their differentiation, proliferation, viability, and migration. Studies have also reported the functional significance of miR-214 in bone diseases and suggested its candidature as a diagnostic and therapeutic target. Further, targeting More >

  • Open Access

    ARTICLE

    A Framework of Deep Learning and Selection-Based Breast Cancer Detection from Histopathology Images

    Muhammad Junaid Umer1, Muhammad Sharif1, Majed Alhaisoni2, Usman Tariq3, Ye Jin Kim4, Byoungchol Chang5,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1001-1016, 2023, DOI:10.32604/csse.2023.030463 - 03 November 2022

    Abstract Breast cancer (BC) is a most spreading and deadly cancerous malady which is mostly diagnosed in middle-aged women worldwide and effecting beyond a half-million people every year. The BC positive newly diagnosed cases in 2018 reached 2.1 million around the world with a death rate of 11.6% of total cases. Early diagnosis and detection of breast cancer disease with proper treatment may reduce the number of deaths. The gold standard for BC detection is biopsy analysis which needs an expert for correct diagnosis. Manual diagnosis of BC is a complex and challenging task. This work… More >

  • Open Access

    ARTICLE

    A Stacked Ensemble-Based Classifier for Breast Invasive Ductal Carcinoma Detection on Histopathology Images

    Ali G. Alkhathami*

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 235-247, 2022, DOI:10.32604/iasc.2022.024952 - 15 April 2022

    Abstract Breast cancer is one of the main causes of death in women. When body tissues start behaves abnormally and the ratio of tissues growth becomes asymmetrical then this stage is called cancer. Invasive ductal carcinoma (IDC) is the early stage of breast cancer. The early detection and diagnosis of invasive ductal carcinoma is a significant step for the cure of IDC breast cancer. This paper presents a convolutional neural network (CNN) approach to detect and visualize the IDC tissues in breast on histological images dataset. The dataset consists of 90 thousand histopathological images containing two… More >

Displaying 1-10 on page 1 of 31. Per Page