Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Densely Convolutional BU-NET Framework for Breast Multi-Organ Cancer Nuclei Segmentation through Histopathological Slides and Classification Using Optimized Features

    Amjad Rehman1, Muhammad Mujahid1, Robertas Damasevicius2,*, Faten S Alamri3, Tanzila Saba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2375-2397, 2024, DOI:10.32604/cmes.2024.056937 - 31 October 2024

    Abstract This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei. This is crucial for histopathological image analysis, as it involves segmenting cell nuclei. However, challenges exist, such as determining the boundary region of normal and deformed nuclei and identifying small, irregular nuclei structures. Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification, but their complex features limit their practical use in clinical settings. The existing studies have limited accuracy, significant processing costs, and a lack of resilience and generalizability across diverse datasets. We… More >

  • Open Access

    ARTICLE

    EfficientNetB1 Deep Learning Model for Microscopic Lung Cancer Lesion Detection and Classification Using Histopathological Images

    Rabia Javed1, Tanzila Saba2, Tahani Jaser Alahmadi3,*, Sarah Al-Otaibi4, Bayan AlGhofaily2, Amjad Rehman2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 809-825, 2024, DOI:10.32604/cmc.2024.052755 - 15 October 2024

    Abstract Cancer poses a significant threat due to its aggressive nature, potential for widespread metastasis, and inherent heterogeneity, which often leads to resistance to chemotherapy. Lung cancer ranks among the most prevalent forms of cancer worldwide, affecting individuals of all genders. Timely and accurate lung cancer detection is critical for improving cancer patients’ treatment outcomes and survival rates. Screening examinations for lung cancer detection, however, frequently fall short of detecting small polyps and cancers. To address these limitations, computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.… More >

  • Open Access

    CORRECTION

    Correction: Breast Calcifications and Histopathological Analysis on Tumour Detection by CNN

    D. Banumathy1,*, Osamah Ibrahim Khalaf2, Carlos Andrés Tavera Romero3, P. Vishnu Raja4, Dilip Kumar Sharma5

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 863-866, 2024, DOI:10.32604/csse.2024.053657 - 20 May 2024

    Abstract This article has no abstract. More >

  • Open Access

    REVIEW

    Biological, pathological, and multifaceted therapeutic functions of exosomes to target cancer

    VIGNESH BALAJI E1, DIVYA RAMESH2, MANISHA CHUNGAN SHAJU3, AKSHARA KUMAR4, SAMYAK PANDEY1, RAKSHA NAYAK1, V. ALKA5, SRISHTI MUNJAL6, AMIR SALIMI7, K. SREEDHARA RANGANATH PAI1,*, SHANKAR M. BAKKANNAVAR2

    Oncology Research, Vol.32, No.1, pp. 73-94, 2024, DOI:10.32604/or.2023.030401 - 15 November 2023

    Abstract Exosomes, small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body. It is considered a “double-edged sword”, and depending on its biological source, the action of exosomes varies under physiological conditions. Also, the isolation and characterization of the exosomes should be performed accurately and the methodology also will vary depending on the exosome source. Moreover, the uptake of exosomes from the recipients’ cells is a vital and initial step for all the physiological actions. There are different mechanisms More > Graphic Abstract

    Biological, pathological, and multifaceted therapeutic functions of exosomes to target cancer

  • Open Access

    REVIEW

    Role of necroptosis in spinal cord injury and its therapeutic implications

    JIAWEI FU1,2,3,#, CHUNSHUAI WU1,2,3,#, GUANHUA XU1,2,3, JINLONG ZHANG1, YIQIU LI1, CHUNYAN JI1,2,3, ZHIMING CUI1,2,3,*

    BIOCELL, Vol.47, No.4, pp. 739-749, 2023, DOI:10.32604/biocell.2023.026881 - 08 March 2023

    Abstract Spinal cord injury (SCI), a complex neurological disorder, triggers a series of devastating neuropathological events such as ischemia, oxidative stress, inflammatory events, neuronal apoptosis, and motor dysfunction. However, the classical necrosome, which consists of receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like protein, is believed to control a novel type of programmed cell death called necroptosis, through tumour necrosis factor-alpha/tumour necrosis factor receptor-1 signalling or other stimuli. Several studies reported that necroptosis plays an important role in neural cell damage, release of intracellular pro-inflammatory factors, lysosomal dysfunction and endoplasmic reticulum stress. Recent research indicates that More >

  • Open Access

    ARTICLE

    Deep Learning Framework for the Prediction of Childhood Medulloblastoma

    M. Muthalakshmi1,*, T. Merlin Inbamalar2, C. Chandravathi3, K. Saravanan4

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 735-747, 2023, DOI:10.32604/csse.2023.032449 - 20 January 2023

    Abstract This research work develops new and better prognostic markers for predicting Childhood MedulloBlastoma (CMB) using a well-defined deep learning architecture. A deep learning architecture could be designed using ideas from image processing and neural networks to predict CMB using histopathological images. First, a convolution process transforms the histopathological image into deep features that uniquely describe it using different two-dimensional filters of various sizes. A 10-layer deep learning architecture is designed to extract deep features. The introduction of pooling layers in the architecture reduces the feature dimension. The extracted and dimension-reduced deep features from the arrangement More >

  • Open Access

    ARTICLE

    Hybrid Models for Breast Cancer Detection via Transfer Learning Technique

    Sukhendra Singh1, Sur Singh Rawat, Manoj Gupta3, B. K. Tripathi4, Faisal Alanazi5, Arnab Majumdar6, Pattaraporn Khuwuthyakorn7, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3063-3083, 2023, DOI:10.32604/cmc.2023.032363 - 31 October 2022

    Abstract Currently, breast cancer has been a major cause of deaths in women worldwide and the World Health Organization (WHO) has confirmed this. The severity of this disease can be minimized to the large extend, if it is diagnosed properly at an early stage of the disease. Therefore, the proper treatment of a patient having cancer can be processed in better way, if it can be diagnosed properly as early as possible using the better algorithms. Moreover, it has been currently observed that the deep neural networks have delivered remarkable performance for detecting cancer in histopathological… More >

  • Open Access

    ARTICLE

    Breast Calcifications and Histopathological Analysis on Tumour Detection by CNN

    D. Banumathy1,*, Osamah Ibrahim Khalaf2, Carlos Andrés Tavera Romero3, P. Vishnu Raja4, Dilip Kumar Sharma5

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 595-612, 2023, DOI:10.32604/csse.2023.025611 - 01 June 2022

    Abstract The most salient argument that needs to be addressed universally is Early Breast Cancer Detection (EBCD), which helps people live longer lives. The Computer-Aided Detection (CADs)/Computer-Aided Diagnosis (CADx) system is indeed a software automation tool developed to assist the health professions in Breast Cancer Detection and Diagnosis (BCDD) and minimise mortality by the use of medical histopathological image classification in much less time. This paper purposes of examining the accuracy of the Convolutional Neural Network (CNN), which can be used to perceive breast malignancies for initial breast cancer detection to determine which strategy is efficient… More >

  • Open Access

    ARTICLE

    Pathological images for personal medicine in Hepatocellular carcinoma: Cross-talk of gene sequencing and pathological images

    LI YANG1,2, KUN DENG3, ZHIQIANG MOU1,2, PINGFU XIONG1,2, JIAN WEN1,2, JING LI1,2,*

    Oncology Research, Vol.30, No.5, pp. 243-258, 2022, DOI:10.32604/or.2022.027958 - 03 February 2023

    Abstract Background: Considering the great heterogeneity of Hepatocellular carcinoma (HCC), more accurate prognostic models are urgently needed. This paper combined the advantages of genomics and pathomics to construct a prognostic model. Methods: First, we collected data from hepatocellular carcinoma patients with complete mRNA expression profiles and clinical annotations from the TCGA database. Then, based on immune-related genes, we used random forest plots to screen prognosis-related genes and build prognostic models. Bioinformatics was used to identify biological pathways, evaluate the tumor microenvironment, and perform drug susceptibility testing. Finally, we divided the patients into different subgroups according to the… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuning Bidirectional Gated Recurrent Unit Model for Oral Cancer Classification

    K. Shankar1, E. Laxmi Lydia2, Sachin Kumar1,*, Ali S. Abosinne3, Ahmed alkhayyat4, A. H. Abbas5, Sarmad Nozad Mahmood6

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4541-4557, 2022, DOI:10.32604/cmc.2022.031247 - 28 July 2022

    Abstract Oral Squamous Cell Carcinoma (OSCC) is a type of Head and Neck Squamous Cell Carcinoma (HNSCC) and it should be diagnosed at early stages to accomplish efficient treatment, increase the survival rate, and reduce death rate. Histopathological imaging is a wide-spread standard used for OSCC detection. However, it is a cumbersome process and demands expert’s knowledge. So, there is a need exists for automated detection of OSCC using Artificial Intelligence (AI) and Computer Vision (CV) technologies. In this background, the current research article introduces Improved Slime Mould Algorithm with Artificial Intelligence Driven Oral Cancer Classification… More >

Displaying 1-10 on page 1 of 30. Per Page