Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    REVIEW

    A Review of the Evolution of Multi-Objective Evolutionary Algorithms

    Thomas Hanne1,*, Mohammad Jahani Moghaddam2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4203-4236, 2025, DOI:10.32604/cmc.2025.068087 - 23 October 2025

    Abstract Multi-Objective Evolutionary Algorithms (MOEAs) have significantly advanced the domain of Multi-Objective Optimization (MOO), facilitating solutions for complex problems with multiple conflicting objectives. This review explores the historical development of MOEAs, beginning with foundational concepts in multi-objective optimization, basic types of MOEAs, and the evolution of Pareto-based selection and niching methods. Further advancements, including decom-position-based approaches and hybrid algorithms, are discussed. Applications are analyzed in established domains such as engineering and economics, as well as in emerging fields like advanced analytics and machine learning. The significance of MOEAs in addressing real-world problems is emphasized, highlighting their More >

  • Open Access

    ARTICLE

    Pareto Multi-Objective Reconfiguration of IEEE 123-Bus Unbalanced Power Distribution Networks Using Metaheuristic Algorithms: A Comprehensive Analysis of Power Quality Improvement

    Nisa Nacar Çıkan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3279-3327, 2025, DOI:10.32604/cmes.2025.065442 - 30 June 2025

    Abstract This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks (UPDNs), focusing on the complex 123-Bus test system. Three scenarios are investigated: (1) simultaneous power loss reduction and voltage profile improvement, (2) minimization of voltage and current unbalance indices under various operational cases, and (3) multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index, active power loss, and current unbalance index. Unlike previous research that oftensimplified system components, this work maintains all equipment, including capacitor banks, transformers, and voltage regulators, to ensure realistic results. The study evaluates twelve metaheuristic More >

  • Open Access

    ARTICLE

    MOCBOA: Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems

    Nour Elhouda Chalabi1, Abdelouahab Attia2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Frank Werner6, Pradeep Jangir7, Mohammad Shokouhifar8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 967-1008, 2025, DOI:10.32604/cmes.2025.062332 - 11 April 2025

    Abstract Multi-objective optimization is critical for problem-solving in engineering, economics, and AI. This study introduces the Multi-Objective Chef-Based Optimization Algorithm (MOCBOA), an upgraded version of the Chef-Based Optimization Algorithm (CBOA) that addresses distinct objectives. Our approach is unique in systematically examining four dominance relations—Pareto, Epsilon, Cone-epsilon, and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front. Our comparison investigation, which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering, mechanical design, and power systems, reveals that the dominance approach More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method

    Sudipta Debnath1, Zahir Uddin Ahmed2, Muhammad Ikhlaq3,4,*, Md. Tanvir Khan5, Avneet Kaur6, Kuljeet Singh Grewal1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 71-94, 2025, DOI:10.32604/fhmt.2024.059734 - 26 February 2025

    Abstract Impinging jet arrays are extensively used in numerous industrial operations, including the cooling of electronics, turbine blades, and other high-heat flux systems because of their superior heat transfer capabilities. Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution, which can lead to improved system performance and energy savings. This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system. The governing equations are resolved employing the commercial computational fluid dynamics (CFD) software ANSYS Fluent v17. The study focuses on four… More > Graphic Abstract

    Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method

  • Open Access

    ARTICLE

    An Immune-Inspired Approach with Interval Allocation in Solving Multimodal Multi-Objective Optimization Problems with Local Pareto Sets

    Weiwei Zhang1, Jiaqiang Li1, Chao Wang2, Meng Li3, Zhi Rao4,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4237-4257, 2024, DOI:10.32604/cmc.2024.050430 - 20 June 2024

    Abstract In practical engineering, multi-objective optimization often encounters situations where multiple Pareto sets (PS) in the decision space correspond to the same Pareto front (PF) in the objective space, known as Multi-Modal Multi-Objective Optimization Problems (MMOP). Locating multiple equivalent global PSs poses a significant challenge in real-world applications, especially considering the existence of local PSs. Effectively identifying and locating both global and local PSs is a major challenge. To tackle this issue, we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded, promising regions and regulate the number of offspring in areas… More >

  • Open Access

    ARTICLE

    A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation

    Fangzhen Ge1,3, Yating Wu1,*, Debao Chen2,4, Longfeng Shen1,5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 189-211, 2024, DOI:10.32604/iasc.2024.042841 - 21 May 2024

    Abstract It is still a huge challenge for traditional Pareto-dominated many-objective optimization algorithms to solve many-objective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front, resulting in poor performance of those algorithms. For this reason, we propose a reference vector-assisted algorithm with an adaptive niche dominance relation, for short MaOEA-AR. The new dominance relation forms a niche based on the angle between candidate solutions. By comparing these solutions, the solution with the best convergence is More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier

    Jun Wang1,2, Linxi Zhang1,2, Hao Zhang1, Funan Peng1,*, Mohammed A. El-Meligy3, Mohamed Sharaf3, Qiang Fu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1281-1299, 2024, DOI:10.32604/cmc.2024.048495 - 25 April 2024

    Abstract The existing algorithms for solving multi-objective optimization problems fall into three main categories: Decomposition-based, dominance-based, and indicator-based. Traditional multi-objective optimization problems mainly focus on objectives, treating decision variables as a total variable to solve the problem without considering the critical role of decision variables in objective optimization. As seen, a variety of decision variable grouping algorithms have been proposed. However, these algorithms are relatively broad for the changes of most decision variables in the evolution process and are time-consuming in the process of finding the Pareto frontier. To solve these problems, a multi-objective optimization algorithm… More >

  • Open Access

    ARTICLE

    Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algorithm

    Parth Khandelwal1, Harshit2, Indranil Manna1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1727-1755, 2024, DOI:10.32604/cmc.2024.042752 - 25 April 2024

    Abstract Metallic alloys for a given application are usually designed to achieve the desired properties by devising experiments based on experience, thermodynamic and kinetic principles, and various modeling and simulation exercises. However, the influence of process parameters and material properties is often non-linear and non-colligative. In recent years, machine learning (ML) has emerged as a promising tool to deal with the complex interrelation between composition, properties, and process parameters to facilitate accelerated discovery and development of new alloys and functionalities. In this study, we adopt an ML-based approach, coupled with genetic algorithm (GA) principles, to design… More > Graphic Abstract

    Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algorithm

  • Open Access

    ARTICLE

    A Multi-Objective Genetic Algorithm Based Load Balancing Strategy for Health Monitoring Systems in Fog-Cloud

    Hayder Makki Shakir, Jaber Karimpour*, Jafar Razmara

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 35-55, 2024, DOI:10.32604/csse.2023.038545 - 26 January 2024

    Abstract As the volume of data and data-generating equipment in healthcare settings grows, so do issues like latency and inefficient processing inside health monitoring systems. The Internet of Things (IoT) has been used to create a wide variety of health monitoring systems. Most modern health monitoring solutions are based on cloud computing. However, large-scale deployment of latency-sensitive healthcare applications is hampered by the cloud’s design, which introduces significant delays during the processing of vast data volumes. By strategically positioning servers close to end users, fog computing mitigates latency issues and dramatically improves scaling on demand, resource… More >

  • Open Access

    ARTICLE

    A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling

    Cuiyu Wang, Xinyu Li, Yiping Gao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1849-1870, 2023, DOI:10.32604/cmes.2023.028098 - 26 June 2023

    Abstract Job shop scheduling (JS) is an important technology for modern manufacturing. Flexible job shop scheduling (FJS) is critical in JS, and it has been widely employed in many industries, including aerospace and energy. FJS enables any machine from a certain set to handle an operation, and this is an NP-hard problem. Furthermore, due to the requirements in real-world cases, multi-objective FJS is increasingly widespread, thus increasing the challenge of solving the FJS problems. As a result, it is necessary to develop a novel method to address this challenge. To achieve this goal, a novel collaborative More >

Displaying 1-10 on page 1 of 23. Per Page