Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    REVIEW

    The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy

    Dandan Xu1, Haijian Shao1,*, Xing Deng1,2, Xia Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 567-597, 2022, DOI:10.32604/cmes.2022.019245 - 14 March 2022

    Abstract As wind and photovoltaic energy become more prevalent, the optimization of power systems is becoming increasingly crucial. The current state of research in renewable generation and power forecasting technology, such as wind and photovoltaic power (PV), is described in this paper, with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting. The methods for forecasting wind power and PV production. The physical model, statistical learning method, and machine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production. More >

Displaying 1-10 on page 1 of 1. Per Page