Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Overexpression of the LcPIN2 and LtPIN2 Gene in Arabidopsis thaliana Promotes Root Elongation

    Zijian Cao#, Guoxia Xue#, Lingfeng Hu, Haoxian Qu, Shuang Liang, Jisen Shi, Jinhui Chen*, Zhaodong Hao*

    Phyton-International Journal of Experimental Botany, Vol.92, No.8, pp. 2383-2397, 2023, DOI:10.32604/phyton.2023.029845 - 25 June 2023

    Abstract The auxin polar transporter, PIN-FORMED 2 (PIN2) plays an important role in root development. However, it remains unclear whether PIN2 genes form two Liriodendron species, L. chinense (LcPIN2) and L. tulipifera (LtPIN2), are both involved in root development and whether and to what extent these two genes diverge in function. Here, we cloned and overexpressed LcPIN2 and LtPIN2 in Arabidopsis thaliana wild-type (WT) and Atpin2 mutant. Phylogenetic and sequence analysis showed a small degree of differentiation between these two Liriodendron PIN2 genes. Tissue-specific gene expression analysis indicated that both Liriodendron PIN2 genes were highly expressed in roots, implying a potential role in root… More >

  • Open Access

    ARTICLE

    Titanium Dioxide Nanoparticles Promote Root Growth by Interfering with Auxin Pathways in Arabidopsis thaliana

    Jiali Wei*, Ying Zou, Ping Li, Xiaojun Yuan

    Phyton-International Journal of Experimental Botany, Vol.89, No.4, pp. 883-891, 2020, DOI:10.32604/phyton.2020.010973 - 09 November 2020

    Abstract TiO2 nanoparticles (nano-TiO2) are widely used in the world, and a considerable amount of nano-TiO2 is released into the environment, with toxic effects on organisms. In the various species of higher plants, growth, including seed germination, root elongation, and biomass accumulation, is affected by nano-TiO2. However, the underlying molecular mechanisms remain to be elucidated. In this study, we observed that nano-TiO2 promoted root elongation in a dose-dependent manner. Furthermore, we found that nano-TiO2 elevated auxin accumulation in the root tips of the auxin marker lines DII-VENUS and DR5:: GUS, and, correspondingly, quantitative real-time PCR analysis revealed that nano-TiO2 increased the More >

Displaying 1-10 on page 1 of 2. Per Page