Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Ziegler–Nichols Customization for Quadrotor Attitude Control under Empty and Full Loading Conditions

    Ivan Paulo Canal1,*, Manuel Martin Pérez Reimbold2, Maurício de Campos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 65-75, 2020, DOI:10.32604/cmes.2020.010741 - 18 September 2020

    Abstract An aircraft quadrotor is a complex control system that allows for great flexibility in flight. Controlling multirotor aerial systems such as quadrotors is complex because the variables involved are not always available, known, and accurate. The inclusion of payload changes the dynamic characteristics of the aircraft, making it necessary to adapt the control system for this situation. Among the various control methods that have been investigated, proportional-integralderivative (PID) control offers good results and simplicity of application; however, achieving stability and high performance is challenging, with the most critical task being tuning the controller gains. The… More >

  • Open Access

    ARTICLE

    PID Tuning Method Using Single-Valued Neutrosophic Cosine Measure and Genetic Algorithm

    Jun Ye

    Intelligent Automation & Soft Computing, Vol.25, No.1, pp. 15-23, 2019, DOI:10.31209/2018.100000067

    Abstract Because existing proportional-integral-derivative (PID) tuning method using similarity measures of single-valued neutrosophic sets (SVNSs) and an increasing step algorithm shows its complexity and inconvenience, this paper proposes a PID tuning method using a cosine similarity measure of SVNSs and genetic algorithm (GA) to improve the existing PID tuning method. In the tuning process, the step response characteristic values (rising time, settling time, overshoot ratio, undershoot ratio, peak time, and steady-state error) of the control system are converted into the single-valued neutrosophic set (SVNS) by the neutrosophic membership functions (Neutrosophication). Then the values of three appropriate More >

Displaying 1-10 on page 1 of 2. Per Page