Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    REVIEW

    Beyond Photomorphogenesis: Multifaceted Roles of BBX Transcription Factors in Plant Stress Responses and Breeding Perspectives

    Qinfu Sun, Junqiang Xing, Wanyu Zhang, Chen Lin*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3349-3370, 2025, DOI:10.32604/phyton.2025.071525 - 01 December 2025

    Abstract Extensive transcriptomic reprogramming is triggered by biotic and abiotic stresses in plants, with coordinated regulation mediated through multiple transcription factor families, such as WRKY, MYB, NAC, and BBX proteins. Among these, B-box (BBX) proteins represent a distinct class of zinc finger transcription factors characterized by the presence of conserved B-box domains. They serve as central regulators in plant photomorphogenesis and developmental processes. Accumulating genetic and biochemical evidence demonstrates that BBX family members orchestrate plant responses to biotic and abiotic stresses through multifaceted molecular mechanisms, including the regulation of reactive oxygen species (ROS) homeostasis, enhancement of… More >

  • Open Access

    ARTICLE

    Synergistic Regulation of Light Intensity and Calcium Nutrition in PFAL-Grown Lettuce by Optimizing Morphogenesis and Nutrient Homeostasis

    Jie Jin1, Tianci Wang1, Yaning Wang1, Jingqi Yao2, Jinxiu Song1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3611-3632, 2025, DOI:10.32604/phyton.2025.070680 - 01 December 2025

    Abstract In plant factory with artificial lighting, precise regulation of environmental and nutritional factors is essential to optimize both growth and quality of leafy vegetables. This study systematically evaluated the combined effects of light intensity (150, 200, 250 μmol/(m2·s)) and calcium supply in the nutrient solution (0.5, 1.0, 1.5 mmol/L) on lettuce morphology, photosynthesis, quality indices, and tipburn incidence. Elevating light from 150 to 200 μmol/(m2·s) significantly enhanced leaf number, area, photosynthetic rate, biomass, and foliar calcium. These gains plateaued at 250 μmol/(m2·s), where tipburn incidence surged to 76.5%. Photosynthetic pigments progressively rose with light intensity. Calcium supply… More >

  • Open Access

    ARTICLE

    BMP-2 Inhibits the Inflammatory Response and Promotes Bone Formation in Rats with Femoral Fracture by Activating the AMPK Signaling Pathway

    Yong Huang1, Xiandeng Li1, Qingling Jing1, Qin Zhang1, Chungui Huang2,*

    BIOCELL, Vol.49, No.11, pp. 2195-2216, 2025, DOI:10.32604/biocell.2025.072716 - 24 November 2025

    Abstract Objective: Mesenchymal stem cells (MSCs) are important cells in bone tissue engineering. Bone morphogenetic protein-2 (BMP-2) effectively treats bone defects and nonunion. The purpose of this study is to investigate whether BMP-2 promotes bone formation and femoral fracture healing by inhibiting inflammation and promoting osteogenic differentiation of MSCs, in order to provide an experimental basis for developing more efficient fracture treatment strategies. Methods: Bone marrow-derived MSCs (BMSCs) were isolated from rats and treated with OE-BMP-2, the 5-adenosine monophosphate-activated protein kinase (AMPK) signal agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), and the inhibitor Compound C. Osteogenic differentiation was evaluated through… More >

  • Open Access

    ARTICLE

    Single-Step Efficient Purification of Phosphogypsum via Wet Grinding and Microenvironmental Treatment

    Shun Chen1,2,3, Jingyuan Fan1, Xingyang He1,2,3,*, Ying Su1,2,3, Jizhan Chen1, Yiming Cao1, Meng Fan1, Zhihao Liu1, Zihao Jin1,2,3, Yubo Li1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1673-1688, 2025, DOI:10.32604/fdmp.2025.065003 - 31 July 2025

    Abstract The presence of impurities in phosphogypsum has long impeded its effective utilization, highlighting the need for energy-efficient and sustainable purification methods. This study proposes a novel purification strategy that synergistically combines pH regulation and micelle-assisted treatment to create an optimized microenvironment for impurity removal. Under mechanical grinding conditions, this approach enhances the rheological properties of the phosphogypsum slurries and facilitates the dissolution and removal of impurity ions. Experimental results demonstrate that the synergistic method achieves a remarkable 64.01% increase in whiteness while significantly reducing soluble phosphorus and fluoride content in a single-step process. This technique More >

  • Open Access

    ARTICLE

    Effect of Organic Waste and Inorganic Additives on Organic Matter Transformation and Mineral Availability in Composting Green Waste

    Abderrahim Boutasknit1,2,3, Mohamed Anli3, Rachid Lahlali4,*, Abdelilah Meddich2,3,5,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2227-2249, 2024, DOI:10.32604/phyton.2024.055629 - 30 September 2024

    Abstract Applying organic waste and inorganic additives during composting can be an effective and easy-to-control strategy for optimizing humification, maturation, and the availability of essential mineral elements in compost. In this respect, this study aims to evaluate the effect of organic (olive-mill waste and horse manure) and inorganic (phosphogypsum) additives on the evolution of maturity indices, aromatic compounds, and nutrient availability during composting. Four mixtures [horse manure + green waste (M1), olive-mill + green waste (M2), sewage-sludge + phos-phogypsum + green waste (M3), and green waste (M4)] were carried out. Physicochemical (temperature, pH, phosphorus, nitrogen, and… More >

  • Open Access

    ARTICLE

    Effect of Lightweight Aggregates Incorporation on the Mechanical Properties and Shrinkage Compensation of a Cement-Ground Granulated Blast Furnace Slag-Phosphogypsum Ternary System

    Yu Wang1,2, Mengyang Ma1,2,*, Yong Long1,2, Qingxiang Zhao1,2, Zhifei Cheng1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1773-1784, 2024, DOI:10.32604/fdmp.2024.048695 - 06 August 2024

    Abstract Shrinkage-induced cracking is a common issue in concrete structures, where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength. In this study, the effect of ceramsite sand addition on the properties of a ternary system of cement-ground granulated blast furnace slag (GGBFS)-phosphogypsum (PG) is investigated. In particular, the fluidity, rheology, hydration heat, compressive strength, autogenous shrinkage, and drying shrinkage of the considered mortar specimens are analyzed. The results indicate that an increase in PG content leads to a decrease in fluidity, higher viscosity, lower More >

  • Open Access

    ARTICLE

    Classification of Multi-view Digital Mammogram Images Using SMO-WkNN

    P. Malathi1,*, G. Charlyn Pushpa Latha2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1741-1758, 2023, DOI:10.32604/csse.2023.035185 - 09 February 2023

    Abstract Breast cancer (BCa) is a leading cause of death in the female population across the globe. Approximately 2.3 million new BCa cases are recorded globally in females, overtaking lung cancer as the most prevalent form of cancer to be diagnosed. However, the mortality rates for cervical and BCa are significantly higher in developing nations than in developed countries. Early diagnosis is the only option to minimize the risks of BCa. Deep learning (DL)-based models have performed well in image processing in recent years, particularly convolutional neural network (CNN). Hence, this research proposes a DL-based CNN… More >

  • Open Access

    ARTICLE

    Transplantation of BMP-7 gene-transfected bone marrow mesenchymal stem cells for the treatment of spinal cord injury in rats

    XUYI WANG1, WEN ZHANG2, LEI GAO2, KUANXIN LI1,3,*

    BIOCELL, Vol.46, No.9, pp. 2065-2072, 2022, DOI:10.32604/biocell.2022.018265 - 18 May 2022

    Abstract Background: Spinal cord injury (SCI) is a serious traumatic disease of the central nervous system, and there is currently no effective treatment for SCI because of its complicated pathophysiology. Bone marrow mesenchymal stem cells (BMSCs) have multidirectional differentiation abilities. Our study aims to explore the effects of bone morphogenetic protein 7 (BMP-7)-modified BMSCs transplantation on the repair of SCI in rats. Methods: In this study, a rat spinal cord injury model was established with the modified Allen method. Then, BMSCs transfected with the BMP7 gene were transplanted to treat the spinal cord injury in rats. Forty… More >

  • Open Access

    ARTICLE

    Development and Field Application of Phosphogypsum-Based Soil Subgrade Stabilizers

    Hongfei Yue1, Aiguo Fang2, Sudong Hua1,*, Zenghuan Gu3, Yu Jia1, Cheng Yang4

    Journal of Renewable Materials, Vol.10, No.8, pp. 2247-2261, 2022, DOI:10.32604/jrm.2022.018901 - 25 April 2022

    Abstract A phosphogypsum-based subgrade stabilizer (PBSS) was formulated using industrial by-product phosphogypsum (PG), mixed with slag and calcium-silicon-rich active material (GSR). The active powder (AP) was used to modify PBSS, and PBSS-AP was obtained. PBSS and PBSS-AP were each mixed with 10% silty soil, and cement and lime (CAL: 5% lime + 2% cement) were used as the traditional material for comparative experiments. Samples were cured under standard conditions, and tested for unconfined compressive strength (UCS), water stability, volume expansion, and leachate, to explore the stabilization effect of the three solidified materials on silty soil. The More >

  • Open Access

    ARTICLE

    Study on Performance Regulation and Mechanism of Quicklime and Biopolymer on Hemihydrate Phosphogypsum

    Zaibo Zhou1, Juanhong Liu1,2,3,*, Kun Luo1, Aixiang Wu1,3, Hongjiang Wang1,3

    Journal of Renewable Materials, Vol.10, No.2, pp. 373-384, 2022, DOI:10.32604/jrm.2022.016380 - 30 August 2021

    Abstract In order to reduce the influence of impurities in hemihydrate phosphogypsum(HPG) on the environment and improve the workability of HPG, the effects of the content of quicklime and types of biopolymer (hydroxypropyl methylcellulose, xanthan gum, sodium polyacrylate(PAANa)) on the compressive strength, softening coefficient and ultrasonic velocity of HPG were evaluated. When the content of quicklime was 1.5% and the content of PAANa was 0.2%, HPG had the best mechanical properties and workability, its water retention rate can be increased by 5.8%, and unconfined compressive strength of 3 days increased by 10.3% and 7 days increased More > Graphic Abstract

    Study on Performance Regulation and Mechanism of Quicklime and Biopolymer on Hemihydrate Phosphogypsum

Displaying 1-10 on page 1 of 27. Per Page