Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (968)
  • Open Access

    ARTICLE

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

    Zhaoqiang Wang1, Fuyin Ni2,*

    Energy Engineering, Vol.121, No.12, pp. 3779-3799, 2024, DOI:10.32604/ee.2024.055535 - 22 November 2024

    Abstract Under the partial shading conditions (PSC) of Photovoltaic (PV) modules in a PV hybrid system, the power output curve exhibits multiple peaks. This often causes traditional maximum power point tracking (MPPT) methods to fall into local optima and fail to find the global optimum. To address this issue, a composite MPPT algorithm is proposed. It combines the improved kepler optimization algorithm (IKOA) with the optimized variable-step perturb and observe (OIP&O). The update probabilities, planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized. This adaptation meets the varying needs of the initial… More > Graphic Abstract

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

  • Open Access

    ARTICLE

    An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features

    Saad M. Darwish1,*, Abdul Rahman M. Sabri2, Dhafar Hamed Abd2, Adel A. Elzoghabi1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1595-1624, 2024, DOI:10.32604/csse.2024.054615 - 22 November 2024

    Abstract The number of blogs and other forms of opinionated online content has increased dramatically in recent years. Many fields, including academia and national security, place an emphasis on automated political article orientation detection. Political articles (especially in the Arab world) are different from other articles due to their subjectivity, in which the author’s beliefs and political affiliation might have a significant influence on a political article. With categories representing the main political ideologies, this problem may be thought of as a subset of the text categorization (classification). In general, the performance of machine learning models… More >

  • Open Access

    REVIEW

    First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review

    Muhammad Abdullah Khan1, Muhammad Usman2, Yuhong Zhao1,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1905-1952, 2024, DOI:10.32604/cmc.2024.054691 - 18 November 2024

    Abstract This comprehensive review examines the structural, mechanical, electronic, and thermodynamic properties of Mg-Li-Al alloys, focusing on their corrosion resistance and mechanical performance enhancement. Utilizing first-principles calculations based on Density Functional Theory (DFT) and the quasi-harmonic approximation (QHA), the combined properties of the Mg-Li-Al phase are explored, revealing superior incompressibility, shear resistance, and stiffness compared to individual elements. The review highlights the brittleness of the alloy, supported by B/G ratios, Cauchy pressures, and Poisson’s ratios. Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics, while Mulliken population analysis emphasizes significant electron transfer within the… More >

  • Open Access

    PROCEEDINGS

    Identification of the Anisotropic Thermal-Mechanical Properties of Sheet Metals Using the Virtual Fields Method

    Jiawei Fu1,2,*, Yahui Cai1, Bowen Zhang1, Zengxiang Qi1, Lehua Qi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013007

    Abstract The accurate characterization of the anisotropic thermal-mechanical constitutive properties of structural sheet metals at elevated temperatures and under nonuniform stress/strain states is crucial for the precise hot plastic forming and structural behavior evaluation of an engineering sheet part. Traditional thermal-mechanical testing methods rely on the assumption of states homogeneity, leading to a large number of tests required for the characterization of material anisotropy and nonlinearity at various high temperatures. In this work, a highly efficient identification method is proposed that allows the simultaneous characterization of the anisotropic yielding, strain hardening and elasto-plasticity thermal softening material More >

  • Open Access

    PROCEEDINGS

    Microstructural Evolution, Mechanical Properties and Corrosion Behaviors of Additively Manufactured Biodegradable Zn-Cu Alloys

    Bo Liu1,2,*, Jia Xie2, Gonghua Chen2, Yugang Gong2, Hongliang Yao1, Tiegang Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012904

    Abstract Biodegradable metal implants that meet clinical applications require good mechanical properties and an appropriate biodegradation rate. Additively manufactured (AM) biodegradable zinc (Zn) alloys constitute an essential branch of orthopedic implants because of their moderate degradation and bone-mimicking mechanical properties. This paper investigated the microstructural evolution and corrosion mechanisms of zinc-copper (Zn-Cu) alloys prepared by the laser-powder-bed-fusion (L-PBF) additive manufacturing method. Alloying with Cu significantly increases the ultimate tensile strength (UTS) of unalloyed Zn, but the UTS and ductility of unalloyed Zn and Zn-2Cu decrease with increasing laser energy density. Unalloyed Zn has a dendritic microstructure,… More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation on Deformation Behaviour and Strengthening Mechanism of Multi-Principal Element Alloys

    Yang Chen1, Baobin Xie1, Weizheng Lu1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011624

    Abstract In order to accurately predict and evaluate the mechanical properties of multi-principal element alloys (MPEAs), some new models and simulation methods need to be developed to solve the problems caused by its unique natural characteristics, such as severe lattice distortion. The existing models are based on the development of low concentration alloys, and cannot be well applied to MPEAs. Here, we develop i) the random field theory informed discrete dislocation dynamics simulations based on high-resolution transmission electron microscopy, to systematically clarify the role of heterogeneous lattice strain on the complex interactions between the dislocation loop… More >

  • Open Access

    PROCEEDINGS

    Mechanical Properties and Failure Modes of 3D-Printed Continuous Fiber-Reinforced Single-Bolt Composite Joints with Curved Paths and Variable Hatch Spaces

    Xin Zhang1,2, Xitao Zheng1,2, Tiantian Yang3, Mingyu Song1,2, Yuanyuan Tian4, Leilei Yan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011277

    Abstract Composite joints are widely used in machinery industries such as aviation, aerospace, and marine, where they transfer main loads as lightweight connectors. Recently, 3D printing with continuous fibers has relieved the required molds in composite manufacturing process and given flexibility to the design of robust composite joints. However, how the curved paths and variable hatch spaces affect the mechanical properties and failure modes of 3D-printed single-bolt composite joints with continuous fibers remains undisclosed. In this study, 3D printing has been introduced to fabricate three types of continuous fiber-reinforced single-bolt composite joints with different paths, including… More >

  • Open Access

    PROCEEDINGS

    Influence of Synchronous-Hammer-Forging Force on the Microstructure and Properties of Laser Directed Energy Deposition 316L Components

    Yunfei Li1, Dongjiang Wu1, Fangyong Niu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012365

    Abstract The plastic deformation assisted method plays a positive role in regulating the microstructure and mechanical properties of metal components in additive manufacturing. In this work, the effect of hammer forging force on the microstructure and mechanical properties of 316L stainless steel additive components were investigated by using synchronous-hammer-forging-assisted laser directed energy deposition method. The results show that when the hammer forging force is greater than 40 N, the grain refinement effect is obvious, the grain size decreases by more than 60 %, and the maximum strength of the polar diagram decreases by more than 75 More >

  • Open Access

    PROCEEDINGS

    Refined Microstructures and Enhanced Strength of In-Situ TiBw/Ti-6.5Al-2.5Zr-1Mo-1V Composites by Selective Laser Melting

    Qi An1,*, Lihua Cui1, Lujun Huang1, Lin Geng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011973

    Abstract Ti-6.5Al-2.5Zr-1Mo-1V alloy is a near α titanium alloy, which has been widely used in aerospace fields due to its low density, high specific strength, good corrosion resistance and high-temperature durability. To further improve the strength and high-temperature durability of Ti-6.5Al-2.5Zr-1Mo-1V complex components, the spherical Ti-6.5Al-2.5Zr-1Mo-1V alloy powder with a particle size of 15~53 μm and TiB2 powder with a particle size of 0.5~1 μm were used to fabricate in-situ TiBw reinforced Ti-6.5Al-2.5Zr-1Mo-1V composites through low energy ball milling and selective laser melting (SLM). The results show that the TiB whiskers are uniformly distributed in the More >

  • Open Access

    PROCEEDINGS

    Recycling of Spent CuCrZr Powder by Laser Powder Bed Fusion: Microstructure Evolution and Properties

    Lizheng Zhang1,2, Jimin Chen1,2,*, Yong Zeng1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011127

    Abstract In laser powder bed fusion (LPBF), the unmelted powder recovered from the powder bed is degraded due to particle-laser interaction during continuous processing. The sensitivity of LPBF performance and molding quality to powder properties, waste powder is usually discarded after several molding cycles, which increases the cost of raw materials. At the same time, the low laser absorption rate and high thermal conductivity of copper and copper alloys inhibit the complete melting of copper powder prepared by LPBF. Therefore, it is challenging to fabricate copper alloy components with full high density and high conductivity through… More >

Displaying 1-10 on page 1 of 968. Per Page