Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Modeling and Validation of Base Pressure for Aerodynamic Vehicles Based on Machine Learning Models

    Jaimon Dennis Quadros1, Sher Afghan Khan2, Abdul Aabid3,*, Muneer Baig3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2331-2352, 2023, DOI:10.32604/cmes.2023.028925 - 03 August 2023

    Abstract The application of abruptly enlarged flows to adjust the drag of aerodynamic vehicles using machine learning models has not been investigated previously. The process variables (Mach number (M), nozzle pressure ratio (η), area ratio (α), and length to diameter ratio (γ )) were numerically explored to address several aspects of this process, namely base pressure (β) and base pressure with cavity (βcav). In this work, the optimal base pressure is determined using the PCA-BAS-ENN based algorithm to modify the base pressure presetting accuracy, thereby regulating the base drag required for smooth flow of aerodynamic vehicles. Based… More > Graphic Abstract

    Modeling and Validation of Base Pressure for Aerodynamic Vehicles Based on Machine Learning Models

Displaying 1-10 on page 1 of 1. Per Page