Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Panel Acoustic Contribution Analysis in Automotive Acoustics Using Discontinuous Isogeometric Boundary Element Method

    Yi Sun1,2,*, Chihua Lu1,2, Zhien Liu1,2, Menglei Sun1, Hao Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2307-2330, 2023, DOI:10.32604/cmes.2023.025313 - 23 November 2022

    Abstract In automotive industries, panel acoustic contribution analysis (PACA) is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest. Currently, PACA is implemented mostly by either experiment-based methods or traditional numerical methods. However, these schemes are effort-consuming and inefficient in solving engineering problems, thereby restraining the further development of PACA in automotive acoustics. In this work, we propose a PACA scheme using discontinuous isogeometric boundary element method (IGABEM) to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body… More >

  • Open Access

    ARTICLE

    Overexpression of Hepatocyte Cell Adhesion Molecule (hepaCAM) Inhibits the Proliferation, Migration, and Invasion in Colorectal Cancer Cells

    Hai-tao Geng*, Rui-juan Cao*, Lei Cheng, Chun-yuan Liu

    Oncology Research, Vol.25, No.7, pp. 1039-1046, 2017, DOI:10.3727/096504016X14813914187138

    Abstract Hepatocyte cell adhesion molecule (hepaCAM), a new type of CAM, belongs to the immunoglobulin superfamily. Recently, hepaCAM was reported to be implicated in cancer development, and many researchers investigated its biological function in the tumorigenesis of various cancers. However, what kind of role hepaCAM plays in colorectal cancer (CRC) remains unknown. In this study, we found that hepaCAM was downregulated in CRC tissues and cell lines. Overexpression of hepaCAM inhibited CRC cell proliferation, migration, and invasion in vitro. Furthermore, the tumorigenesis assay showed that increased expression of hepaCAM suppressed CRC tumor growth and metastasis in More >

Displaying 1-10 on page 1 of 2. Per Page