Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (122)
  • Open Access

    ARTICLE

    Cd and Hg Mediated Oxidative Stress, Antioxidative Metabolism and Molecular Changes in Soybean (Glycine max L.)

    Sheeba Naaz1,2, Nadeem Ahmad2, Asma A. Al-Huqail3, Mohammad Irfan4, Faheema Khan3, Mohammad Irfan Qureshi1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.6, pp. 1725-1742, 2023, DOI:10.32604/phyton.2023.026100

    Abstract Cadmium (Cd) and Mercury (Hg) is among the heavy metals most hazardous for plant and human health. Known to induce oxidative stress in plants and disbalance equilibrium in the antioxidant defence system, these metals alter plant growth and cause damage at the cellular and molecular levels. Soybean is an important oilseed crop that is raised in soils often contaminated by Cd and Hg. The comparative studies on the deleterious effect of Cd and Hg and the defence system of antioxidants were not studied earlier in soybean plant. In this study, soybean plants were exposed to Cd (100 µM CdCl2) and… More >

  • Open Access

    REVIEW

    Review on marine collagen peptides induce cancer cell apoptosis, necrosis, and autophagy by reducing oxidized free radicals

    YINGHUA LUO1,#, YU ZHANG2,#, TONG ZHANG2,#, YANNAN LI2, HUI XUE2, JINGLONG CAO2, WENSHUANG HOU2, JIAN LIU2, YUHE CUI2, TING XU2, CHENGHAO JIN2,3,*

    BIOCELL, Vol.47, No.5, pp. 965-975, 2023, DOI:10.32604/biocell.2023.027729

    Abstract Marine collagen peptides (MCPs) are natural products prepared by hydrolyzing marine collagen protein through a variety of chemical methods or enzymes. MCPs have a range of structures and biological activities and are widely present in marine species. MCPs also have a small molecular weight, are easily modified, and absorbed by the body. These properties have attracted great interest from researchers studying antioxidant, anti-tumor, and anti-aging activities. MCPs of specific molecular weights have significant anti-tumor activity and no toxic side effects. Thus, MCPs have the potential use as anti-cancer adjuvant drugs. Free radicals produced by oxidation are closely related to human… More >

  • Open Access

    REVIEW

    Phytochemistry and ethnomedicinal qualities of metabolites from Phyllanthus emblica L.: A review

    VIJAY KUMAR1,#, PRAVEEN C. RAMAMURTHY2,#, SIMRANJEET SINGH2,#, DALJEET SINGH DHANJAL3, PARUL PARIHAR4, DEEPIKA BHATIA5, RAM PRASAD6,*, JOGINDER SINGH7,*

    BIOCELL, Vol.47, No.5, pp. 1159-1176, 2023, DOI:10.32604/biocell.2023.022065

    Abstract Phyllanthus emblica or Indian gooseberry is an integrated part of Ayurvedic and Traditional Chinese Medicines. For several decades, the well-known ancient herb has been extensively utilized in traditional medicine to cure diseases like fever, diabetes, constipation, jaundice, ulcers, biliousness, anemia, anorexia, and dyspepsia. In the traditional system, Indian gooseberry has various ethnomedicinal applications. In the Ayurvedic system, different methods of administration (anupan) have shown different ethnomedicinal properties of Indian gooseberry. Seventy well-known chemical components in Indian gooseberry have been identified through phytochemical evaluation, among which the flavonoids and phenols are most prominent. From the toxicity perspective, it is considered a… More >

  • Open Access

    REVIEW

    Synthesis of Metallic Nanoparticles Based on Green Chemistry and Their Medical Biochemical Applications: Synthesis of Metallic Nanoparticles

    Kakudji Kisimba1, Anand Krishnan2,*, Mbuso Faya1, Kahumba Byanga3, Kabange Kasumbwe4, Kaliyapillai Vijayakumar5, Ram Prasad6,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2575-2591, 2023, DOI:10.32604/jrm.2023.026159

    Abstract Nanoparticles have distinct properties that make them potentially valuable in a variety of industries. As a result, emerging approaches for the manufacture of nanoparticles are gaining a lot of scientific interest. The biological pathway of nanoparticle synthesis has been suggested as an effective, affordable, and environmentally safe method. Synthesis of nanoparticles through physical and chemical processes uses unsafe materials, expensive equipment and adversely affects the environment. As a result, in order to support the increased utilization of nanoparticles across many sectors, nanotechnology research activities have shifted toward environmentally safe and cost-effective techniques that outperform chemical and/or biological procedures. The use… More > Graphic Abstract

    Synthesis of Metallic Nanoparticles Based on Green Chemistry and Their Medical Biochemical Applications: Synthesis of Metallic Nanoparticles

  • Open Access

    ARTICLE

    Response of Contrasting Rice Genotypes to Zinc Sources under Saline Conditions

    Muhammad Jan1,*, Muhammad Anwar-Ul-Haq2, Talha Javed3, Sadam Hussain4,*, Ilyas Ahmad5, Muhammad Ashraf Sumrah6, Javed Iqbal7, Babar Hussain Babar8, Aqsa Hafeez9, Muhammad Aslam5, Muhammad Tahir Akbar10, Marjan Aziz6, Khadiga Alharbi11, Izhar Ullah12

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1361-1375, 2023, DOI:10.32604/phyton.2023.026620

    Abstract Abiotic stresses are among the major limiting factors for plant growth and crop productivity. Among these, salinity is one of the major risk factors for plant growth and development in arid to semi-arid regions. Cultivation of salt tolerant crop genotypes is one of the imperative approaches to meet the food demand for increasing population. The current experiment was carried out to access the performance of different rice genotypes under salinity stress and Zinc (Zn) sources. Four rice genotypes were grown in a pot experiment and were exposed to salinity stress (7 dS m−1), and Zn (15 mg kg−1 soil) was… More >

  • Open Access

    ARTICLE

    Melatonin Promotes Rice Seed Germination under Drought Stress by Regulating Antioxidant Capacity

    Luqian Zhang1,#, Xilin Fang1,#, Nan Yu1, Jun Chen1, Haodong Wang1, Quansheng Shen1, Guanghui Chen2,*, Yue Wang1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1571-1587, 2023, DOI:10.32604/phyton.2023.025481

    Abstract Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings. Melatonin has been proven to play an important role in alleviating plant stress. However, its effect on seed germination under drought conditions is still poorly understood. Therefore, we studied the effects of melatonin on rice seed germination and physiological characteristics under drought stress. Rice seeds were treated with different concentrations of melatonin (i.e., 0, 20, 100, and 500 μM) and drought stress was simulated with 5% polyethylene glycol 6000 (PEG6000). The results showed that 100 μM melatonin can effectively improve the germination potential,… More >

  • Open Access

    ARTICLE

    An in Vitro Approach to Investigate the Role of Abscisic Acid in Alleviating the Negative Effects of Chilling Stress on Banana Shoots

    Ibrahim Hmmam1,*, Ali Raza2, Ivica Djalovic3, Nagwa Khedr1, Abdou Abdellatif1

    Phyton-International Journal of Experimental Botany, Vol.92, No.6, pp. 1695-1711, 2023, DOI:10.32604/phyton.2023.028317

    Abstract Banana is a tropical crop cultivated in warm places. Chilling stress in Egypt is making banana crops less productive. Abscisic acid (ABA), a key plant hormone, regulates metabolic and physiological processes and protects plants from a variety of stresses. In vitro growing banana shoots were pre-treated with ABA at four concentrations (0, 25, 50, and 100 mM) and chilled at 5°C for 24 h, followed by a six-day recovery period at 25°C. By comparing ABA treatments to both positive and negative controls, physiological and biochemical changes were investigated. Chilling stress (5°C) caused a considerable increase in lipid peroxidation and ion… More >

  • Open Access

    ARTICLE

    Salicylic Acid Application Mitigates Oxidative Damage and Improves the Growth Performance of Barley under Drought Stress

    Shah Mohammad Naimul Islam1, Niloy Paul1, Md. Mezanur Rahman2, Md. Ashraful Haque1, Md. Motiar Rohman3, Mohammad Golam Mostofa4,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1513-1537, 2023, DOI:10.32604/phyton.2023.025175

    Abstract Drought is a severe environmental constraint, causing a significant reduction in crop productivity across the world. Salicylic acid (SA) is an important plant growth regulator that helps plants cope with the adverse effects induced by various abiotic stresses. The current study investigated the potential effects of SA on drought tolerance efficacy in two barley (Hordeum vulgare) genotypes, namely BARI barley 5 and BARI barley 7. Ten-day-old barley seedlings were exposed to drought stress by maintaining 7.5% soil moisture content in the absence or presence of 0.5, 1.0 and 1.5 mM SA. Drought exposure led to severe damage to both genotypes,… More >

  • Open Access

    ARTICLE

    The Physiological and Molecular Responses of Exogenous Selenium to Selenium Content and Fruit Quality in Walnut

    Mufang Sun1, Xinran Hui2, Cuiling Tong3, Longyi Yuan2, Dejian Zhang1,2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 851-860, 2023, DOI:10.32604/phyton.2022.025147

    Abstract To study the effect of exogenous selenium on fruit quality in walnut (Juglans regia L.), 8-year-old walnut (Qingxiang) was taken as the research object. In the fruit expansion stage, 300 mg/L of sodium selenate, yeast selenium and sodium selenite solutions were applied on the leaf of walnut, and the selenium levels in leaves, pericarp and kernel were determined at the ripening stage. The fruit quality, mineral nutrient content, antioxidant enzyme activity, and related genes’ expression were analyzed. The results showed that the three exogenous selenium increased the selenium levels in leaves, pericarp and kernel of walnut. They also significantly increased… More >

  • Open Access

    ARTICLE

    Silicon and Nitric Oxide-Mediated Regulation of Growth Attributes, Metabolites and Antioxidant Defense System of Radish (Raphanus sativus L.) under Arsenic Stress

    Savita Bhardwaj1, Tunisha Verma1, Ali Raza2,*, Dhriti Kapoor1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 763-782, 2023, DOI:10.32604/phyton.2023.025672

    Abstract

    Arsenic (As) contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world. Therefore, the present study was designed to investigate the individual as well as the combined effects of exogenous silicon (Si) and sodium nitroprusside (SNP), a nitric oxide (NO) donor, on plant growth, metabolites, and antioxidant defense systems of radish (Raphanus sativus L.) plants under three different concentrations of As stress, i.e., 0.3, 0.5, and 0.7 mM in a pot experiment. The results showed that As stress reduced the growth parameters of… More >

Displaying 21-30 on page 3 of 122. Per Page