Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    Development of a Novel Origami Paper-Based Gripper

    Johan J. Nunez-Quispe1,4, Fan Liu2, Isaac Ming3, Vanessa Liu4, Rongguang Xu2, Litong Jiang7, Adriel Gonzales-Martell5, Haning Xiu6, Zi Chen2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.012510

    Abstract The present research proposes a new way to design and develop a robotic gripper with a superior response in terms of controlled motion, low weight, and construction complexity. The proposed gripper design involves an innovative, cost-effective, utilizing origami-based engineering to overcome the complexities and high costs associated with conventional grippers. We developed a lightweight origami gripper that transitions from a square to a rhombus shape through simple manual folding. This type of device has specific features depending on how folding lines are placed, design parameters, folding orientation, and material thickness. This transformation enables efficient grasping… More >

  • Open Access

    PROCEEDINGS

    4D Printed Shape Memory Polymer Behavior Simulation and Validation

    Zhao Wang1, Jun Liu1, Xiaoying Qi2, Chadur Venkatesan2, Sharon Nai2, David W. Rosen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011890

    Abstract Shape memory polymers (SMP) have many applications as actuators in soft robotics. However, predicting their shape change behavior is challenging, which makes designing suitable actuators difficult. For thermally stimulated shape memory polymers, constitutive models of shape change behavior show promise in enabling predictable shape changes, which is necessary for actuator design. These models are usually classified as either rheological or phase transition, with the former being more general, although non-physical in nature, and the latter being more physically significant [1]. Of interest in this work is 2-state shape change transitions for single-material actuators; that is,… More >

  • Open Access

    PROCEEDINGS

    Miura-Origami Soft Robots with Proprioceptive and Interactive Sensing via Embedded Optical Sensors

    Shaowu Tang1, Sicong Liu1,*, Jian S Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011746

    Abstract Origami, a traditional and elegant folding technique, provides a solution for the deformation of three-dimensional structures. Inspired by this, origami-based soft actuators and robots exhibit the advantages of portability, high efficiency, and programmability when performing functions such as locomotion, manipulation, and interaction. However, these deformable origami structures bring challenges to sensing methods and technologies, due to hyperelastic deformations of the soft materials. In this work, a sensing approach is proposed to enable origami robots with proprioceptive and interactive sensing capabilities. The 3D-printed Miura-ori chambers of the robot are embedded with infrared optical sensors (a light-emitting… More >

  • Open Access

    PROCEEDINGS

    Hybrid Artificial Muscle: Enhanced Actuation and Load-Bearing Performance via an Origami Metamaterial Endoskeleton

    Ting Tan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012670

    Abstract Owing to their compliance, soft robots demonstrate enhanced compatibility with humans and the environment compared with traditional rigid robots. However, ensuring the working effectiveness of artificial muscles that actuate soft robots in confined spaces or underloaded conditions remains a challenge. Drawing inspiration from avian pneumatic bones, we propose the incorporation of a light weight endoskeleton into artificial muscles to augment the mechanical integrity and tackle load-bearing environmental difficulties. We present a soft origami hybrid artificial muscle that features a hollow origami metamaterial interior with a rolled dielectric elastomer exterior. The programmable nonlinear origami metamaterial endoskeleton More >

Displaying 1-10 on page 1 of 4. Per Page