Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,545)
  • Open Access

    ARTICLE

    Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables

    Liang Chen1, Jingbo Zhang1, Linjie Wu1, Xingjuan Cai1,2,*, Yubin Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 363-383, 2024, DOI:10.32604/cmes.2024.049044

    Abstract The large-scale multi-objective optimization algorithm (LSMOA), based on the grouping of decision variables, is an advanced method for handling high-dimensional decision variables. However, in practical problems, the interaction among decision variables is intricate, leading to large group sizes and suboptimal optimization effects; hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables (MOEAWOD) is proposed in this paper. Initially, the decision variables are perturbed and categorized into convergence and diversity variables; subsequently, the convergence variables are subdivided into groups based on the interactions among different decision variables. If the size of a group surpasses the set… More >

  • Open Access

    ARTICLE

    Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures

    Xue-Qin Li1, Lu-Kai Song2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 665-684, 2024, DOI:10.32604/cmes.2024.048445

    Abstract Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function, leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy. In this case, by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory, a random forest (RF) model is presented to enhance the computing efficiency of reliability degree; moreover, by embedding the RF model into multilevel optimization model, an efficient RF-assisted fatigue reliability-based design optimization framework is developed. Regarding the low-cycle fatigue reliability-based design optimization of… More >

  • Open Access

    ARTICLE

    Multi-Stage Multidisciplinary Design Optimization Method for Enhancing Complete Artillery Internal Ballistic Firing Performance

    Jipeng Xie1,2, Guolai Yang1,*, Liqun Wang1, Lei Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 793-819, 2024, DOI:10.32604/cmes.2024.048174

    Abstract To enhance the comprehensive performance of artillery internal ballistics—encompassing power, accuracy, and service life—this study proposed a multi-stage multidisciplinary design optimization (MS-MDO) method. First, the comprehensive artillery internal ballistic dynamics (AIBD) model, based on propellant combustion, rotation band engraving, projectile axial motion, and rifling wear models, was established and validated. This model was systematically decomposed into subsystems from a system engineering perspective. The study then detailed the MS-MDO methodology, which included Stage I (MDO stage) employing an improved collaborative optimization method for consistent design variables, and Stage II (Performance Optimization) focusing on the independent optimization of local design variables and… More >

  • Open Access

    ARTICLE

    Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint

    Zibin Mao1, Qinghai Zhao1,2,*, Liang Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 757-792, 2024, DOI:10.32604/cmes.2024.048016

    Abstract This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design. The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads. The topology optimization formula is combined with the ordered solid isotropic material with penalization (ordered-SIMP) multi-material interpolation model. The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function. Furthermore, the sequential optimization and reliability assessment (SORA) is applied to… More >

  • Open Access

    ARTICLE

    Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model

    Kai Wang1, Biao He2,*, Pijush Samui3, Jian Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 229-253, 2024, DOI:10.32604/cmes.2024.047569

    Abstract Rock bursts represent a formidable challenge in underground engineering, posing substantial risks to both infrastructure and human safety. These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock, leading to severe seismic events and structural damage. Therefore, the development of reliable prediction models for rock bursts is paramount to mitigating these hazards. This study aims to propose a tree-based model—a Light Gradient Boosting Machine (LightGBM)—to predict the intensity of rock bursts in underground engineering. 322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset, which serves… More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability

    Wenjun Zhou1,2, Mingzhi Yang1, Qian Peng2, Yong Peng1,*, Kui Wang1, Qiang Xiao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 735-755, 2024, DOI:10.32604/cmes.2024.047258

    Abstract The widespread adoption of aluminum alloy electric buses, known for their energy efficiency and eco-friendliness, faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel. This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries, necessitating robust frame protection. Our study aims to optimize the connectors of aluminum alloy bus frames, emphasizing durability, energy efficiency, and safety. This research delves into Multi-Objective Coordinated Optimization (MCO) techniques for lightweight design in aluminum alloy bus body connectors. Our goal is to enhance lightweighting, reinforce energy absorption, and improve deformation resistance in… More >

  • Open Access

    ARTICLE

    Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms

    Junjie Zhao, Diyuan Li*, Jingtai Jiang, Pingkuang Luo

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 275-304, 2024, DOI:10.32604/cmes.2024.046960

    Abstract Traditional laboratory tests for measuring rock uniaxial compressive strength (UCS) are tedious and time-consuming. There is a pressing need for more effective methods to determine rock UCS, especially in deep mining environments under high in-situ stress. Thus, this study aims to develop an advanced model for predicting the UCS of rock material in deep mining environments by combining three boosting-based machine learning methods with four optimization algorithms. For this purpose, the Lead-Zinc mine in Southwest China is considered as the case study. Rock density, P-wave velocity, and point load strength index are used as input variables, and UCS is regarded… More > Graphic Abstract

    Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms

  • Open Access

    ARTICLE

    Buckling Optimization of Curved Grid Stiffeners through the Level Set Based Density Method

    Zhuo Huang, Ye Tian, Yifan Zhang, Tielin Shi, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 711-733, 2024, DOI:10.32604/cmes.2024.045411

    Abstract Stiffened structures have great potential for improving mechanical performance, and the study of their stability is of great interest. In this paper, the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method, where the shape and cross section (including thickness and width) of the stiffeners can be optimized simultaneously. The grid stiffeners are a combination of many single stiffeners which are projected by the corresponding level set functions. The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level… More >

  • Open Access

    ARTICLE

    Effect of Alkali Treatment on Saharan aloe vera cactus Fibre Properties and Optimization of Process by Response Surface Methodology

    GOBI NALLATHAMBI, BHARGAVI RAM THIMMIAH*

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 189-200, 2020, DOI:10.32381/JPM.2020.37.3-4.6

    Abstract The aim of this study is to optimize the process parameters of alkali treated Saharan aloe vera cactus fibres using of Box-behnken experimental design. The Saharan aloe vera cactus fibres were treated with different concentration of NaOH, soaking time and temperature which affect the properties of fibres and plays main role in removal of lignin, hemicellulose, pectin and wax content. The chemical composition of untreated and treated fibres was analyzed by standard methods. XRD result shows the improvement in the crystallinity index of fibres due to alkali treatment. ATR-FTIR analysis shows that hemicellulose and lignin were decreased in all alkali… More >

  • Open Access

    ARTICLE

    Analysis and Optimization of the Electrohydraulic Forming Process of Sinusoidal Corrugation Tubes

    Da Cai, Yinlong Song, Hao Jiang, Guangyao Li, Junjia Cui*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 873-887, 2024, DOI:10.32604/fdmp.2023.025833

    Abstract Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness. They can be produced at room temperature by the electrohydraulic forming process. In the present study, the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed. In particular, the orthogonal experimental design (OED) and central composite design (CCD) methods have been used. Through the range analysis and variance analysis of the experimental data, the influence degree of wire diameter (WD) and discharge energy (DE) on the forming quality… More >

Displaying 1-10 on page 1 of 1545. Per Page