Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Enhancing Exam Preparation through Topic Modelling and Key Topic Identification

    Rudraneel Dutta*, Shreya Mohanty

    Journal on Artificial Intelligence, Vol.6, pp. 177-192, 2024, DOI:10.32604/jai.2024.050706 - 19 July 2024

    Abstract Traditionally, exam preparation involves manually analyzing past question papers to identify and prioritize key topics. This research proposes a data-driven solution to automate this process using techniques like Document Layout Segmentation, Optical Character Recognition (OCR), and Latent Dirichlet Allocation (LDA) for topic modelling. This study aims to develop a system that utilizes machine learning and topic modelling to identify and rank key topics from historical exam papers, aiding students in efficient exam preparation. The research addresses the difficulty in exam preparation due to the manual and labour-intensive process of analyzing past exam papers to identify… More >

  • Open Access

    ARTICLE

    Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions

    Adéla Hamplová1,*, Alexey Lyavdansky2,*, Tomáš Novák1, Ondřej Svojše1, David Franc1, Arnošt Veselý1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2869-2889, 2024, DOI:10.32604/cmes.2024.050791 - 08 July 2024

    Abstract This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern deep learning methods in archaeological research. Our research culminates in several key findings and scientific contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context. We also created… More >

  • Open Access

    ARTICLE

    Optimised CNN Architectures for Handwritten Arabic Character Recognition

    Salah Alghyaline*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4905-4924, 2024, DOI:10.32604/cmc.2024.052016 - 20 June 2024

    Abstract Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles. Arabic is morphologically rich, and its characters have a high similarity. The Arabic language includes 28 characters. Each character has up to four shapes according to its location in the word (at the beginning, middle, end, and isolated). This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters. The proposed architectures were derived from the popular CNN architectures, such as VGG, ResNet, and Inception, to make them applicable to recognizing character-size images. The experimental results on three More >

  • Open Access

    ARTICLE

    Baseline Isolated Printed Text Image Database for Pashto Script Recognition

    Arfa Siddiqu, Abdul Basit*, Waheed Noor, Muhammad Asfandyar Khan, M. Saeed H. Kakar, Azam Khan

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 875-885, 2023, DOI:10.32604/iasc.2023.036426 - 29 April 2023

    Abstract The optical character recognition for the right to left and cursive languages such as Arabic is challenging and received little attention from researchers in the past compared to the other Latin languages. Moreover, the absence of a standard publicly available dataset for several low-resource languages, including the Pashto language remained a hurdle in the advancement of language processing. Realizing that, a clean dataset is the fundamental and core requirement of character recognition, this research begins with dataset generation and aims at a system capable of complete language understanding. Keeping in view the complete and full… More >

  • Open Access

    REVIEW

    Review of Optical Character Recognition for Power System Image Based on Artificial Intelligence Algorithm

    Xun Zhang1, Wanrong Bai1, Haoyang Cui2,*

    Energy Engineering, Vol.120, No.3, pp. 665-679, 2023, DOI:10.32604/ee.2023.020342 - 03 January 2023

    Abstract Optical Character Recognition (OCR) refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image. This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence (AI) algorithms, in which the different AI algorithms for OCR analysis are classified and reviewed. Firstly, the mechanisms and characteristics of artificial neural network-based OCR are summarized. Secondly, this paper explores machine learning-based OCR, and draws the conclusion that the algorithms available for this form of OCR are still in their infancy, with low generalization and More >

  • Open Access

    ARTICLE

    Visual News Ticker Surveillance Approach from Arabic Broadcast Streams

    Moeen Tayyab1, Ayyaz Hussain2,*, Usama Mir3, M. Aqeel Iqbal4, Muhammad Haneef5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6177-6193, 2023, DOI:10.32604/cmc.2023.034669 - 28 December 2022

    Abstract The news ticker is a common feature of many different news networks that display headlines and other information. News ticker recognition applications are highly valuable in e-business and news surveillance for media regulatory authorities. In this paper, we focus on the automatic Arabic Ticker Recognition system for the Al-Ekhbariya news channel. The primary emphasis of this research is on ticker recognition methods and storage schemes. To that end, the research is aimed at character-wise explicit segmentation using a semantic segmentation technique and words identification method. The proposed learning architecture considers the grouping of homogeneous-shaped classes. More >

  • Open Access

    REVIEW

    Arabic Optical Character Recognition: A Review

    Salah Alghyaline*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 1825-1861, 2023, DOI:10.32604/cmes.2022.024555 - 23 November 2022

    Abstract This study aims to review the latest contributions in Arabic Optical Character Recognition (OCR) during the last decade, which helps interested researchers know the existing techniques and extend or adapt them accordingly. The study describes the characteristics of the Arabic language, different types of OCR systems, different stages of the Arabic OCR system, the researcher’s contributions in each step, and the evaluation metrics for OCR. The study reviews the existing datasets for the Arabic OCR and their characteristics. Additionally, this study implemented some preprocessing and segmentation stages of Arabic OCR. The study compares the performance… More >

  • Open Access

    ARTICLE

    Vehicle Density Prediction in Low Quality Videos with Transformer Timeseries Prediction Model (TTPM)

    D. Suvitha*, M. Vijayalakshmi

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 873-894, 2023, DOI:10.32604/csse.2023.025189 - 01 June 2022

    Abstract Recent advancement in low-cost cameras has facilitated surveillance in various developing towns in India. The video obtained from such surveillance are of low quality. Still counting vehicles from such videos are necessity to avoid traffic congestion and allows drivers to plan their routes more precisely. On the other hand, detecting vehicles from such low quality videos are highly challenging with vision based methodologies. In this research a meticulous attempt is made to access low-quality videos to describe traffic in Salem town in India, which is mostly an un-attempted entity by most available sources. In this… More >

  • Open Access

    ARTICLE

    Deep Learning Based Residual Network Features for Telugu Printed Character Recognition

    Vijaya Krishna Sonthi1,*, S. Nagarajan1, N. Krishnaraj2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1725-1736, 2022, DOI:10.32604/iasc.2022.026940 - 25 May 2022

    Abstract In India, Telugu is one of the official languages and it is a native language in the Andhra Pradesh and Telangana states. Although research on Telugu optical character recognition (OCR) began in the early 1970s, it is still necessary to develop effective printed character recognition for the Telugu language. OCR is a technique that aids machines in identifying text. The main intention in the classifier design of the OCR systems is supervised learning where the training process takes place on the labeled dataset with numerous characters. The existing OCR makes use of patterns and correlations… More >

  • Open Access

    ARTICLE

    Support Vector Machine Based Handwritten Hindi Character Recognition and Summarization

    Sunil Dhankhar1,*, Mukesh Kumar Gupta1, Fida Hussain Memon2,3, Surbhi Bhatia4, Pankaj Dadheech1, Arwa Mashat5

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 397-412, 2022, DOI:10.32604/csse.2022.024059 - 23 March 2022

    Abstract In today’s digital era, the text may be in form of images. This research aims to deal with the problem by recognizing such text and utilizing the support vector machine (SVM). A lot of work has been done on the English language for handwritten character recognition but very less work on the under-resourced Hindi language. A method is developed for identifying Hindi language characters that use morphology, edge detection, histograms of oriented gradients (HOG), and SVM classes for summary creation. SVM rank employs the summary to extract essential phrases based on paragraph position, phrase position,… More >

Displaying 1-10 on page 1 of 12. Per Page