Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls

    Xiaorui Zhang1,2,3,*, Qijian Xie1, Wei Sun3,4, Yongjun Ren1,2,3, Mithun Mukherjee5

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 47-61, 2023, DOI:10.32604/cmc.2023.042561 - 31 October 2023

    Abstract Fall behavior is closely related to high mortality in the elderly, so fall detection becomes an important and urgent research area. However, the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy. To solve the above problems, this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose. Lightweight OpenPose uses MobileNet as a feature extraction network, and the prediction layer uses bottleneck-asymmetric structure, thus reducing the amount of the network. The bottleneck-asymmetrical structure compresses the number of input… More >

  • Open Access

    ARTICLE

    Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition

    Motasem S. Alsawadi1,*, El-Sayed M. El-kenawy2,3, Miguel Rio1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 19-36, 2023, DOI:10.32604/cmc.2023.032499 - 22 September 2022

    Abstract The ever-growing available visual data (i.e., uploaded videos and pictures by internet users) has attracted the research community's attention in the computer vision field. Therefore, finding efficient solutions to extract knowledge from these sources is imperative. Recently, the BlazePose system has been released for skeleton extraction from images oriented to mobile devices. With this skeleton graph representation in place, a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action. We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of More >

  • Open Access

    ARTICLE

    Skeleton Keypoints Extraction Method Combined with Object Detection

    Jiabao Shi1, Zhao Qiu1,*, Tao Chen1, Jiale Lin1, Hancheng Huang2, Yunlong He3, Yu Yang3

    Journal of New Media, Vol.4, No.2, pp. 97-106, 2022, DOI:10.32604/jnm.2022.027176 - 13 June 2022

    Abstract Big data is a comprehensive result of the development of the Internet of Things and information systems. Computer vision requires a lot of data as the basis for research. Because skeleton data can adapt well to dynamic environment and complex background, it is used in action recognition tasks. In recent years, skeleton-based action recognition has received more and more attention in the field of computer vision. Therefore, the keypoints of human skeletons are essential for describing the pose estimation of human and predicting the action recognition of the human. This paper proposes a skeleton point More >

Displaying 1-10 on page 1 of 3. Per Page