Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Real-Time Spammers Detection Based on Metadata Features with Machine Learning

    Adnan Ali1, Jinlong Li1, Huanhuan Chen1, Uzair Aslam Bhatti2, Asad Khan3,*

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 241-258, 2023, DOI:10.32604/iasc.2023.041645 - 27 February 2024

    Abstract Spammer detection is to identify and block malicious activities performing users. Such users should be identified and terminated from social media to keep the social media process organic and to maintain the integrity of online social spaces. Previous research aimed to find spammers based on hybrid approaches of graph mining, posted content, and metadata, using small and manually labeled datasets. However, such hybrid approaches are unscalable, not robust, particular dataset dependent, and require numerous parameters, complex graphs, and natural language processing (NLP) resources to make decisions, which makes spammer detection impractical for real-time detection. For… More >

  • Open Access

    ARTICLE

    Effect of Online Social Networking on Emotional Status and Its Interaction with Offline Reality during the Early Stage of the COVID-19 Pandemic in China

    Xiaolin Lu1,*, Xiaolei Miao2

    International Journal of Mental Health Promotion, Vol.25, No.9, pp. 1041-1052, 2023, DOI:10.32604/ijmhp.2023.030232 - 10 August 2023

    Abstract Background: During the early stages of the COVID-19 pandemic in China, social interactions shifted to online spaces due to lock-downs and social distancing measures. As a result, the impact of online social networking on users’ emotional status has become stronger than ever. This study examines the association between online social networking and Internet users’ emotional status and how offline reality affects this relationship. Methods: The study utilizes cross-sectional online survey data (n = 3004) and Baidu Migration big data from the first 3 months of the pandemic. Two dimensions of online networking are measured: social… More > Graphic Abstract

    Effect of Online Social Networking on Emotional Status and Its Interaction with Offline Reality during the Early Stage of the COVID-19 Pandemic in China

  • Open Access

    ARTICLE

    Generalized Jaccard Similarity Based Recurrent DNN for Virtualizing Social Network Communities

    R. Gnanakumari1,*, P. Vijayalakshmi2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2719-2730, 2023, DOI:10.32604/iasc.2023.034145 - 15 March 2023

    Abstract In social data analytics, Virtual Community (VC) detection is a primary challenge in discovering user relationships and enhancing social recommendations. VC formation is used for personal interaction between communities. But the usual methods didn’t find the Suspicious Behaviour (SB) needed to make a VC. The Generalized Jaccard Suspicious Behavior Similarity-based Recurrent Deep Neural Network Classification and Ranking (GJSBS-RDNNCR) Model addresses these issues. The GJSBS-RDNNCR model comprises four layers for VC formation in Social Networks (SN). In the GJSBS-RDNNCR model, the SN is given as an input at the input layer. After that, the User’s Behaviors… More >

  • Open Access

    ARTICLE

    Machine Learning Techniques for Detecting Phishing URL Attacks

    Diana T. Mosa1,2, Mahmoud Y. Shams3,*, Amr A. Abohany2, El-Sayed M. El-kenawy4, M. Thabet5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1271-1290, 2023, DOI:10.32604/cmc.2023.036422 - 06 February 2023

    Abstract Cyber Attacks are critical and destructive to all industry sectors. They affect social engineering by allowing unapproved access to a Personal Computer (PC) that breaks the corrupted system and threatens humans. The defense of security requires understanding the nature of Cyber Attacks, so prevention becomes easy and accurate by acquiring sufficient knowledge about various features of Cyber Attacks. Cyber-Security proposes appropriate actions that can handle and block attacks. A phishing attack is one of the cybercrimes in which users follow a link to illegal websites that will persuade them to divulge their private information. One… More >

  • Open Access

    ARTICLE

    Enhanced Clustering Based OSN Privacy Preservation to Ensure k-Anonymity, t-Closeness, l-Diversity, and Balanced Privacy Utility

    Rupali Gangarde1,2,*, Amit Sharma3, Ambika Pawar4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2171-2190, 2023, DOI:10.32604/cmc.2023.035559 - 06 February 2023

    Abstract Online Social Networks (OSN) sites allow end-users to share a great deal of information, which may also contain sensitive information, that may be subject to commercial or non-commercial privacy attacks. As a result, guaranteeing various levels of privacy is critical while publishing data by OSNs. The clustering-based solutions proved an effective mechanism to achieve the privacy notions in OSNs. But fixed clustering limits the performance and scalability. Data utility degrades with increased privacy, so balancing the privacy utility trade-off is an open research issue. The research has proposed a novel privacy preservation model using the… More >

  • Open Access

    ARTICLE

    A Query-Based Greedy Approach for Authentic Influencer Discovery in SIoT

    Farah Batool1, Abdul Rehman2, Dongsun Kim2,*, Assad Abbas1, Raheel Nawaz3, Tahir Mustafa Madni1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6535-6553, 2023, DOI:10.32604/cmc.2023.033832 - 28 December 2022

    Abstract The authors propose an informed search greedy approach that efficiently identifies the influencer nodes in the social Internet of Things with the ability to provide legitimate information. Primarily, the proposed approach minimizes the network size and eliminates undesirable connections. For that, the proposed approach ranks each of the nodes and prioritizes them to identify an authentic influencer. Therefore, the proposed approach discards the nodes having a rank (α) lesser than 0.5 to reduce the network complexity. α is the variable value represents the rank of each node that varies between 0 to 1. Node with… More >

  • Open Access

    ARTICLE

    Spotted Hyena Optimizer with Deep Learning Driven Cybersecurity for Social Networks

    Anwer Mustafa Hilal1,2,*, Aisha Hassan Abdalla Hashim1, Heba G. Mohamed3, Lubna A. Alharbi4, Mohamed K. Nour5, Abdullah Mohamed6, Ahmed S. Almasoud7, Abdelwahed Motwakel2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2033-2047, 2023, DOI:10.32604/csse.2023.031181 - 03 November 2022

    Abstract Recent developments on Internet and social networking have led to the growth of aggressive language and hate speech. Online provocation, abuses, and attacks are widely termed cyberbullying (CB). The massive quantity of user generated content makes it difficult to recognize CB. Current advancements in machine learning (ML), deep learning (DL), and natural language processing (NLP) tools enable to detect and classify CB in social networks. In this view, this study introduces a spotted hyena optimizer with deep learning driven cybersecurity (SHODLCS) model for OSN. The presented SHODLCS model intends to accomplish cybersecurity from the identification More >

  • Open Access

    ARTICLE

    Malicious Activities Prediction Over Online Social Networking Using Ensemble Model

    S. Sadhasivam1, P. Valarmathie2, K. Dinakaran3,*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 461-479, 2023, DOI:10.32604/iasc.2023.028650 - 29 September 2022

    Abstract With the vast advancements in Information Technology, the emergence of Online Social Networking (OSN) has also hit its peak and captured the attention of the young generation people. The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user. However, the attackers also target this height of OSN utilization, explicitly creating the clones of the user’s account. Various clone detection mechanisms are designed based on social-network activities. For instance, monitoring the occurrence of clone edges is done to restrict the generation of clone activities.… More >

  • Open Access

    ARTICLE

    Customized Share Level Monitoring System for Users in OSN-Third Party Applications

    T. Shanmuigapriya1,*, S. Swamynathan2, Thiruvaazhi Uloli3

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1327-1339, 2022, DOI:10.32604/csse.2022.024440 - 09 May 2022

    Abstract Preserving privacy of the user is a very critical requirement to be met with all the international laws like GDPR, California privacy protection act and many other bills in place. On the other hand, Online Social Networks (OSN) has a wide spread recognition among the users, as a means of virtual communication. OSN may also acts as an identity provider for both internal and external applications. While it provides a simplified identification and authentication function to users across multiple applications, it also opens the users to a new spectrum of privacy threats. The privacy breaches… More >

  • Open Access

    ARTICLE

    Deep Contextual Learning for Event-Based Potential User Recommendation in Online Social Networks

    T. Manojpraphakar*, A. Soundarrajan

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 699-713, 2022, DOI:10.32604/iasc.2022.025090 - 03 May 2022

    Abstract Event recommendation allows people to identify various recent upcoming social events. Based on the Profile or User recommendation people will identify the group of users to subscribe the event and to participate, despite it faces cold-start issues intrinsically. The existing models exploit multiple contextual factors to mitigate the cold-start issues in essential applications on profile recommendations to the event. However, those existing solution does not incorporate the correlation and covariance measures among various contextual factors. Moreover, recommending similar profiles to various groups of the events also has not been well analyzed in the existing literature.… More >

Displaying 1-10 on page 1 of 11. Per Page