Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (693)
  • Open Access

    ARTICLE

    Experimental Study of Sand Transport Assisted by Self-Suspended Proppant in Complex Fractures

    Yang Zhang1, Xiaoping Yang1, Yalan Zhang1, Mingzhe Han1, Jiayi Sun2, Zhengsheng Xia3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075388 - 06 February 2026

    Abstract Self-suspended proppants, which enable clear-water fracturing, represent a promising new class of materials for reservoir stimulation. Given the economic limitations associated with their exclusive use, this study investigates proppant transport behavior in hybrid systems combining self-suspended proppants with conventional 40/70 mesh quartz sand at various mixing ratios. A dedicated experimental apparatus was developed to replicate field-relevant complex fracture networks, consisting of a main fracture and two branching fractures with different deflection angles. Using this system, sand bank formation and proppant distribution were examined for both conventional quartz sand fracturing and fracturing augmented with self-suspended proppants.… More >

  • Open Access

    ARTICLE

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

    Xianke He1, Yuansheng Li1, Hengjie Liao1, Zhehao Jiang1, Meixue Shi1, Zhe Hu2,3, Yaowei Huang2,3, Keliu Wu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074990 - 06 February 2026

    Abstract Weak water-drive offshore reservoirs with complex pore architecture and strong permeability heterogeneity present major challenges, including rapid depletion of formation energy, low waterflood efficiency, and significant lateral and vertical variability in crude oil properties, all of which contribute to limited recovery. To support more effective field development, alternative strategies and a deeper understanding of pore-scale flow behavior are urgently needed. In this work, CT imaging and digital image processing were used to construct a digital rock model representative of the target reservoir. A pore-scale flow model was then developed, and the Volume of Fluid (VOF)… More > Graphic Abstract

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

  • Open Access

    ARTICLE

    Selection of Conservation Practices in Different Vineyards Impacts Soil, Vines and Grapes Quality Attributes

    Antonios Chrysargyris1,*, Demetris Antoniou2, Timos Boyias2, Nikolaos Tzortzakis1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.076565 - 30 January 2026

    Abstract Cyprus has an extensive record in grape production and winemaking. Grapevine is essential for the economic and environmental sustainability of the agricultural sector, as it is in other Mediterranean regions. Intensive agriculture can overuse and exhaust natural resources, including soil and water. The current study evaluated how conservation strategies, including no tillage and semi-tillage (as a variation of strip tillage), affected grapevine growth and grape quality when compared to conventional tillage application. Two cultivars were used: Chardonnay and Maratheftiko (indigenous). Soil pH decreased, and EC increased after tillage applications, in both vineyards. Tillage lowered soil… More >

  • Open Access

    ARTICLE

    Effects of NPK and Micronutrient Fertilization on Soil Enzyme Activities, Microbial Biomass, and Nutrient Availability

    Dilfuza Jabborova1,2,3,*, Khurshid Sulaymanov1, Muzafar Jabborov4, Nayan Ahmed5, Tatiana Minkina6, Olga Biryukova6, Nasir Mehmood6,*, Vishnu D. Rajput6

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.072577 - 30 January 2026

    Abstract The combined effects of macronutrients (Nitrogen, Phosphorus, and Potassium-N, P, K) and micronutrient fertilization on turmeric yield, soil enzymatic activity, microbial biomass, and nutrient dynamics remains poorly understood, despite their significance for sustainable soil fertility management and optimizing crop productivity across diverse agroecosystems. To investigate, a net house experiment on sandy loam Haplic Chernozem was conducted to 03 fertilizer regimes, viz. N75P50K50 kg ha−1 (T-2), N125P100K100 kg ha−1 (T-3), and N100P75K75 + B3Zn6Fe6 kg ha−1 (T-4). Furthermore, the influence of these treatments was systematically assessed on soil nutrient status (N, P, K), enzymatic activities (alkaline phosphomonoesterase, dehydrogenase, fluorescein diacetate… More >

  • Open Access

    ARTICLE

    Influence of Phenological Stage on the Volatile Content and Biological Properties of Origanum elongatum Essential Oil

    Amine Batbat1,2, Khaoula Habbadi2, Mohamed Jeddi3, Samiah Hamad Al-Mijalli4, Hanae Naceiri Mrabti5, Fahad M. Alshabrmi6, Naif Hesham Moursi7, Hassane Greche1, Naoufal El Hachlafi8,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.072398 - 30 January 2026

    Abstract Origanum elongatum (OE) is an aromatic, medicinal plant endemic to Morocco that is widely used in traditional medicine due to its biological properties. This study aimed to elucidate the chemical composition of the essential oil (EO) obtained from O. elongatum (OEEO) at three stages of its life cycle, including vegetative stage (OEEO-VS), flowering stage (OEEO-FS), and post-flowering (OEEO-PFS), as well as to evaluate its biological and antiradical characteristics. The chemical analysis of the essential oil was conducted using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was evaluated in vitro through distinct methodologies, namely, disc diffusion and microatmosphere assay;… More >

  • Open Access

    ARTICLE

    Impacts of Fertilization and Soil Amendments on Rhizosphere Microbiota and Growth of Panax: A Meta-Analysis

    Hong Chen1,2, Runze Yang1,2, Jing Tian1,2, Boyuan Xu1,2, Qiang Chen3, Yuzong Chen1,2, Ming-Xiao Zhao1,2,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.072276 - 30 January 2026

    Abstract Panax species are globally recognized for their high medicinal and economic value, yet large-scale cultivation is constrained by high production costs, progressive soil acidification, and persistent soil-borne diseases. Although various soil improvement strategies have been tested, a comprehensive synthesis of their comparative effectiveness has been lacking. Here, we conducted a meta-analysis of 1381 observations from 54 independent studies to evaluate the effects of conventional fertilizers, microbial fertilizers, organic amendments, and inorganic amendments on Panax cultivation. Our results demonstrate that microbial fertilizers, organic amendments, and inorganic amendments significantly increased soil pH, thereby ameliorating soil acidification. Among them,… More >

  • Open Access

    ARTICLE

    Gradient Descent-Based Prediction of Heat-Transmission Rate of Engine Oil-Based Hybrid Nanofluid over Trapezoidal and Rectangular Fins for Sustainable Energy Systems

    Maddina Dinesh Kumar1,#, S. U. Mamatha2, Khalid Masood3, Nehad Ali Shah4,#, Se-Jin Yook1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074680 - 29 January 2026

    Abstract Fluid dynamic research on rectangular and trapezoidal fins is aimed at increasing heat transfer by means of large surfaces. The trapezoidal cavity form is compared with its thermal and flow performance, and it is revealed that trapezoidal fins tend to be more efficient, particularly when material optimization is critical. Motivated by the increasing need for sustainable energy management, this work analyses the thermal performance of inclined trapezoidal and rectangular porous fins utilising a unique hybrid nanofluid. The effectiveness of nanoparticles in a working fluid is primarily determined by their thermophysical properties; hence, optimising these properties… More >

  • Open Access

    ARTICLE

    Heating the Future: Solar Hot Water Collectors for Energy-Efficient Homes in Sweden

    Mehran Karimi1, Hesamodin Heidarigoujani1, Mehdi Jahangiri1,*, Milad Torabi Anaraki2, Daryosh Mohamadi Janaki3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070190 - 27 January 2026

    Abstract The technical, economic, and environmental performance of solar hot-water (SWH) systems for Swedish residential apartments—where approximately 80% of household energy is devoted to space heating and sanitary hot-water production—was assessed. Two collector types, flat plate (FP) and evacuated tube (ET), were simulated in TSOL Pro 5.5 for five major cities (Stockholm, Göteborg, Malmö, Uppsala, Linköping). Climatic data and cold-water temperatures were sourced from Meteonorm 7.1, and economic parameters were derived from recent national statistics and literature. All calculations explicitly accounted for heat losses from collectors, storage tanks, and internal and external piping systems, and established… More >

  • Open Access

    ARTICLE

    Development of Mycelium Leather (Mylea) from Oil Palm Empty Fruit Bunch (OPEFB) Waste Using White Rot Fungi as a Renewable Leather Material

    Pingkan Aditiawati1, Kamarisima1, Rudi Dungani1,*, Tirto Prakoso2, Neil Priharto1, Muhammad Iqbal Ar-Razy Suwardi1, Muhammad Rizki Ramdhani1, Maya Fitriyanti1, Dzulianur Mutsla1, Widya Fatriasari3

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0113 - 23 January 2026

    Abstract This study aimed to produce and characterize mycelium leather (Mylea) derived from oil palm empty fruit bunch (OPEFB). Variations in OPEFB composition (10%, 20%, 30%, and 40%) were tested using a 10% w/w Ganoderma lucidum inoculum. The mycelium underwent boiling, plasticization, drying, pressing, waxing, and Tencel fabric reinforcement to form Mylea. The physical, mechanical, and flammability properties of OPEFB-based Mylea were evaluated as a potential animal leather substitute. The highest tensile strength (8.47 MPa) was observed in the 0% OPEFB sample due to reinforcement with the Tencel fabric layer. Meanwhile, the 20% OPEFB sample after drying More > Graphic Abstract

    Development of Mycelium Leather (Mylea) from Oil Palm Empty Fruit Bunch (OPEFB) Waste Using White Rot Fungi as a Renewable Leather Material

  • Open Access

    RETRACTION

    Retraction: MicroRNA-148a Acts as a Tumor Suppressor in Osteosarcoma via Targeting Rho-Associated Coiled-Coil Kinase

    Oncology Research Editorial Office

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.077270 - 30 December 2025

    Abstract This article has no abstract. More >

Displaying 1-10 on page 1 of 693. Per Page