Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System

    Thavavel Vaiyapuri*, Adel Binbusayyis

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3271-3288, 2021, DOI:10.32604/cmc.2021.017665 - 06 May 2021

    Abstract In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-the-art performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an… More >

  • Open Access

    ARTICLE

    State-Based Control Feature Extraction for Effective Anomaly Detection in Process Industries

    Ming Wan1, Jinfang Li1, Jiangyuan Yao2, *, Rongbing Wang1, 3, Hao Luo1

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1415-1431, 2020, DOI:10.32604/cmc.2020.09692 - 30 April 2020

    Abstract In process industries, the characteristics of industrial activities focus on the integrality and continuity of production process, which can contribute to excavating the appropriate features for industrial anomaly detection. From this perspective, this paper proposes a novel state-based control feature extraction approach, which regards the finite control operations as different states. Furthermore, the procedure of state transition can adequately express the change of successive control operations, and the statistical information between different states can be used to calculate the feature values. Additionally, OCSVM (One Class Support Vector Machine) and BPNN (BP Neural Network), which are More >

Displaying 1-10 on page 1 of 2. Per Page