Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (90)
  • Open Access

    ARTICLE

    Kaempferol ameliorated levodopa-induced dyskinesia in experimental rats: A role of brain monoamines, cFOS, FosB, Parkin, Pdyn, TH, and p-JNK

    PEI QIN#, MIAO LIU#, XIN WANG, JIANHUA MA*

    BIOCELL, Vol.48, No.3, pp. 513-523, 2024, DOI:10.32604/biocell.2023.045640

    Abstract Background: L-dopa (Levodopa) is well known for managing PD (Parkinson’s disease); however, its prolonged use caused dyskinesia (LID). Due to the varied presentation of LID, effective treatment options are scarce. Flavonoids reported their neuroprotective activity by ameliorating acetylcholinesterase, monoamine oxidase, and neuroinflammation. Kaempferol is another flavonoid bearing these potentials. Aim: To evaluate neuroprotective activity of kaempferol in dyskinetic rats. Methods: PD was developed in Sprague-Dawley rats by injecting combination of L-ascorbic acid (10 µL) + 6-OHDA (12 µg) in medial forebrain bundle to induce neuronal damage in substantial nigra (SNr). LID was induced by administrating combination of L-dopa (20 mg/kg)… More > Graphic Abstract

    Kaempferol ameliorated levodopa-induced dyskinesia in experimental rats: A role of brain monoamines, cFOS, FosB, Parkin, Pdyn, TH, and p-JNK

  • Open Access

    PROCEEDINGS

    Fracture Behavior of Periodic Porous Structures by Phase Field Method

    Yuxuan Ying1, Wei Huang1,*, Yu-E Ma1, Fan Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.010572

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic compression experiments with different liquid… More >

  • Open Access

    PROCEEDINGS

    Dynamic Response of Rectangular Sandwich Tubes with Metal Foam Core Under Blast Loading

    Haoyuan Guo1, Jianxun Zhang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09071

    Abstract In this paper, the dynamic response of clamped rectangular sandwich tubes with metal foam core under transverse blast loading is studied by analytical analysis and FE simulation. It is assumed that the local denting occurs before the overall bending, and the local denting leads to the reduction of the fully plastic bending moment of cross-section. First, based on the modified solution for the maximum deflection of the solid beam under transverse blast loading, a semiempirical analytical solution for the dynamic response of rectangular hollow metal tube is given subjected to transverse blast loading considering local denting effect and combined axial… More >

  • Open Access

    PROCEEDINGS

    Dynamic Compression and Energy Absorption Behaviours of a Nanofluidic Liquid Foam

    Haiqi Feng1, Wei Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09347

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio [1-7]. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic compression experiments with different… More >

  • Open Access

    ARTICLE

    Optimal Concentration of the Bubble Drainage Agent in Foam Drainage Gas Recovery Applications

    Shaopeng Liu1, Guowei Wang2,3,*, Pengfei Liu1, Dong Ye1, Jian Song1, Xing Liu1, Yang Cheng2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3045-3058, 2023, DOI:10.32604/fdmp.2023.029810

    Abstract Foam drainage is the flow of liquid through the interstitial spaces between bubbles driven by capillarity and gravity and resisted by viscous damping. The so-called foam drainage gas recovery technology is a technique traditionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production. In this context, determining the optimal concentration of the bubble drainage agent is generally crucial for the proper application of this method. In this study, a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a… More >

  • Open Access

    PROCEEDINGS

    Evaluation of Blast Mitigation Effects of Cylindrical Explosion Containment Vessels Based on Foam

    Lei Yang1, Guangyan Huang1,2,*, Tao Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09759

    Abstract In order to evaluate the blast mitigation effect of polyurethane foam in cylindrical explosion containment vessels (CECVs), a three-dimensional numerical simulation model was established. The Structured Arbitrary Lagrange-Euler (S-ALE) algorithm was applied in current simulations to define the coupling contact between TNT and Lagrange algorithm. The numerical model was verified by comparing the dynamic deformation and permanent deformation of the experiments. Based on the numerical simulation model after verification, the influence of polyurethane foam filling inside CECVs on the mitigation effect was investigated. The results revealed that compared with the ALE algorithm, the numerical simulations based on the S-ALE algorithm… More >

  • Open Access

    PROCEEDINGS

    Tensile Properties and Microscopic Mechanism of Carbon Nanotube/Graphene Foam Materials

    Shuai Wang1,*, Lihong Liang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09163

    Abstract Compared to pure carbon nanotube (CNT) foam (CF) and pure graphene foam (GrF), the CNT/graphene composite foam show enhanced mechanical properties, using coarse-grained molecular dynamics method, the tensile and compressive properties and corresponding deformation mechanism of several typical CNT/graphene composite foams were studied. The CNT coating could enhance the bending resistance of graphene, based on the CNT-coated graphene flakes, the CNT-coated graphene foam (CCGF) is constructed, which shows better compressive modulus due to the enhanced bending resistance of CNT-coated graphene flakes compared to graphene in pure GrF [1]. CNT can enhance the mechanical properties of graphene foams not only by… More >

  • Open Access

    ARTICLE

    Flexible Biofoams Based on Furanics and Fatty Acids Esterified Tannin

    Elham Azadeh1, Ummi Hani Abdullah2,3, Christine Gerardin1,*, Antonio Pizzi1,*, Philippe Gerardin1, Cesar Segovia4

    Journal of Renewable Materials, Vol.11, No.10, pp. 3625-3645, 2023, DOI:10.32604/jrm.2023.030373

    Abstract Water repellant, flexible biofoams using tannin esterified with various fatty acid chains, namely lauric, palmitic and oleic acids, by reaction with lauryl chloride, palmitoyl chloride, and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams. Glycerol, while initially added to control the reaction temperature, was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams. Acetaldehyde was used as the cross-linking agent instead of formaldehyde, as it showed a better performance with the esterified tannin. The compression results showed a significant decrease of the Modulus of Elasticity… More >

  • Open Access

    ARTICLE

    Higher Order OAM Mode Generation Using Wearable Antenna for 5G NR Bands

    Shehab Khan Noor1, Arif Mawardi Ismail1, Mohd Najib Mohd Yasin1,*, Mohamed Nasrun Osman1, Thennarasan Sabapathy1, Shakhirul Mat Salleh2, Ping Jack Soh3, Ali Hanafiah Rambe4, Nurulazlina Ramli5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 537-551, 2023, DOI:10.32604/csse.2023.037381

    Abstract This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum (OAM) waves with Mode +2 at 3.5 GHz (3.4 to 3.6 GHz) of the sub-6 GHz fifth-generation (5G) New Radio (NR) band. The proposed antenna is based on a uniform circular array of eight microstrip patch antennas on a felt textile substrate. In contrast to previous works involving the use of rigid substrates to generate OAM waves, this work explored the use of flexible substrates to generate OAM waves for the first time. Other than that, the proposed antenna was simulated, analyzed, fabricated, and… More >

  • Open Access

    ARTICLE

    INTEGRATED MICRO X-RAY TOMOGRAPHY AND PORE-SCALE SIMULATIONS FOR ACCURATE PERMEABILITY PREDICTIONS OF POROUS MEDIA

    Fangzhou Wanga,* , Gennifer A. Rileyb, Munonyedi Egboc, Melanie M. Derbyb, Gisuk Hwangc, Xianglin Lia,†

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-8, 2020, DOI:10.5098/hmt.15.1

    Abstract This study conducts pore-scale simulations and experiments to estimate the permeability of two different types of porous materials: metal foams and sintered copper particles with porosities of approximately 0.9 and 0.4, respectively. The integration of micro X-ray computed tomography with pore-scale computational fluid dynamics simulations develops a unique tool to capture the pore-scale geometry of porous media and accurately predict non-isotropic permeability of porous media. The pore-scale simulation not only results in improved prediction accuracy but also has the capability to capture non-isotropic properties of heterogeneous materials, which is a huge challenge for empirical correlations, volume averaged simulations, and simulations… More >

Displaying 1-10 on page 1 of 90. Per Page