Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Evolutionary Safe Padé Approximation Scheme for Dynamical Study of Nonlinear Cervical Human Papilloma Virus Infection Model

    Javaid Ali1, Armando Ciancio2, Kashif Ali Khan3, Nauman Raza4,5, Haci Mehmet Baskonus6,*, Muhammad Luqman1, Zafar-Ullah Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2275-2296, 2024, DOI:10.32604/cmes.2024.046923

    Abstract This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic (CCE) model. The underlying CCE model lacks a closed-form exact solution. Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties, such as positivity, boundedness, and feasibility. Therefore, the development of structure-preserving semi-analytical approaches is always necessary. This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem. Singularity-free safe Padé rational functions approximate the mathematical More >

Displaying 1-10 on page 1 of 1. Per Page