Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    VIEWPOINT

    AAV-based gene therapy approaches for genetic forms of tauopathies and related neurogenetic disorders

    MOHAMED AGHYAD AL KABBANI1,2, GILBERT WUNDERLICH3,4, CHRISTOPH KöHLER5, HANS ZEMPEL1,2,*

    BIOCELL, Vol.46, No.4, pp. 847-853, 2022, DOI:10.32604/biocell.2022.018144

    Abstract Tauopathies comprise a spectrum of genetic and sporadic neurodegenerative diseases mainly characterized by the presence of hyperphosphorylated TAU protein aggregations in neurons or glia. Gene therapy, in particular adeno-associated virus (AAV)-based, is an effective medical approach for difficult-to-treat genetic diseases for which there are no convincing traditional therapies, such as tauopathies. Employing AAV-based gene therapy to treat, in particular, genetic tauopathies has many potential therapeutic benefits, but also drawbacks which need to be addressed in order to successfully and efficiently adapt this still unconventional therapy for the various types of tauopathies. In this Viewpoint, we briefly introduce some potentially treatable… More >

  • Open Access

    REVIEW

    Mesenchymal stem cells: As a multi-target cell therapy for clearing β-amyloid deposition in Alzheimer’s disease

    RUXIN ZHANG1, CHENGGANG LI2, RUOCHEN DU1, YITONG YUAN1, BICHUN ZHAO1, YUJUAN ZHANG1, CHUNFANG WANG1,*

    BIOCELL, Vol.46, No.3, pp. 583-592, 2022, DOI:10.32604/biocell.2022.017248

    Abstract Extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) are the pathological hallmarks of Alzheimer’s disease (AD). Studies have shown that aggregates of extracellular Aβ can induce neuroinflammation mediated neurotoxic signaling through microglial activation and release of pro-inflammatory factors. Thus, modulation of Aβ might be a potential therapeutic strategy for modifying disease progression. Recently, a large number of reports have confirmed the beneficial effects of mesenchymal stem cells (MSCs) on AD. It is believed to reduce neuroinflammation, reduce Aβ amyloid deposits and NFTs, increase acetylcholine levels, promote neurogenesis, reduce neuronal damage, and improve working memory and cognition. In this review, we… More >

  • Open Access

    ARTICLE

    Ultrastructural changes of the olfactory bulb in manganesetreated mice

    VIRGINIA VILLALOBOS1, ERNESTO BONILLA2,4,*, ALAN CASTELLANO3, ERNESTO NOVO1, RALPH CASPERSEN4, DEBORA GIRALDOTH1, SHIRLEY MEDINA-LEENDERTZ4

    BIOCELL, Vol.33, No.3, pp. 187-197, 2009, DOI:10.32604/biocell.2009.33.187

    Abstract The effect of manganese toxicity on the ultrastructure of the olfactory bulb was evaluated. Male albino mice were injected intraperitoneally with MnCl2 (5 mg/Kg/day) five days per week during nine weeks. The control group received NaCl (0.9%). The olfactory bulbs of five mice from each group were processed for transmission electron microscopy after 2, 4, 6 and 9 weeks of manganese treatment. On week 2, some disorganization of the myelin sheaths was observed. After 4 weeks, degenerated neurons with dilated cisternae of rough endoplasmic reticulum and swollen mitochondria appeared. A certain degree of gliosis with a predominance of astrocytes with… More >

Displaying 1-10 on page 1 of 3. Per Page