Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (481)
  • Open Access

    ARTICLE

    Spatio-Temporal Graph Neural Networks with Elastic-Band Transform for Solar Radiation Prediction

    Guebin Choi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073985 - 29 January 2026

    Abstract This study proposes a novel forecasting framework that simultaneously captures the strong periodicity and irregular meteorological fluctuations inherent in solar radiation time series. Existing approaches typically define inter-regional correlations using either simple correlation coefficients or distance-based measures when applying spatio-temporal graph neural networks (STGNNs). However, such definitions are prone to generating spurious correlations due to the dominance of periodic structures. To address this limitation, we adopt the Elastic-Band Transform (EBT) to decompose solar radiation into periodic and amplitude-modulated components, which are then modeled independently with separate graph neural networks. The periodic component, characterized by strong More >

  • Open Access

    REVIEW

    Learning from Scarcity: A Review of Deep Learning Strategies for Cold-Start Energy Time-Series Forecasting

    Jihoon Moon*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071052 - 29 January 2026

    Abstract Predicting the behavior of renewable energy systems requires models capable of generating accurate forecasts from limited historical data, a challenge that becomes especially pronounced when commissioning new facilities where operational records are scarce. This review aims to synthesize recent progress in data-efficient deep learning approaches for addressing such “cold-start” forecasting problems. It primarily covers three interrelated domains—solar photovoltaic (PV), wind power, and electrical load forecasting—where data scarcity and operational variability are most critical, while also including representative studies on hydropower and carbon emission prediction to provide a broader systems perspective. To this end, we examined… More >

  • Open Access

    REVIEW

    A Systematic Review of Frameworks for the Detection and Prevention of Card-Not-Present (CNP) Fraud

    Kwabena Owusu-Mensah*, Edward Danso Ansong , Kofi Sarpong Adu-Manu, Winfred Yaokumah

    Journal of Cyber Security, Vol.8, pp. 33-92, 2026, DOI:10.32604/jcs.2026.074265 - 20 January 2026

    Abstract The rapid growth of digital payment systems and remote financial services has led to a significant increase in Card-Not-Present (CNP) fraud, which is now the primary source of card-related losses worldwide. Traditional rule-based fraud detection methods are becoming insufficient due to several challenges, including data imbalance, concept drift, privacy concerns, and limited interpretability. In response to these issues, a systematic review of twenty-four CNP fraud detection frameworks developed between 2014 and 2025 was conducted. This review aimed to identify the technologies, strategies, and design considerations necessary for adaptive solutions that align with evolving regulatory standards.… More >

  • Open Access

    ARTICLE

    An Improved PID Controller Based on Artificial Neural Networks for Cathodic Protection of Steel in Chlorinated Media

    José Arturo Ramírez-Fernández1, Henevith G. Méndez-Figueroa1, Sebastián Ossandón2,*, Ricardo Galván-Martínez3, Miguel Ángel Hernández-Pérez3, Ricardo Orozco-Cruz3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072707 - 12 January 2026

    Abstract In this study, artificial neural networks (ANNs) were implemented to determine design parameters for an impressed current cathodic protection (ICCP) prototype. An ASTM A36 steel plate was tested in 3.5% NaCl solution, seawater, and NS4 using electrochemical impedance spectroscopy (EIS) to monitor the evolution of the substrate surface, which affects the current required to reach the protection potential (Eprot). Experimental data were collected as training datasets and analyzed using statistical methods, including box plots and correlation matrices. Subsequently, ANNs were applied to predict the current demand at different exposure times, enabling the estimation of electrochemical More >

  • Open Access

    ARTICLE

    Advancing Breast Cancer Molecular Subtyping: A Comparative Study of Convolutional Neural Networks and Vision Transformers on Mammograms

    Chee Chin Lim1,2,*, Hui Wen Tiu1, Qi Wei Oung1,3, Chiew Chea Lau4, Xiao Jian Tan2,5

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070468 - 12 January 2026

    Abstract Breast cancer remains one of the leading causes of cancer mortality world-wide, with accurate molecular subtyping is critical for guiding treatment and improving patient outcomes. Traditional molecular subtyping via immuno-histochemistry (IHC) test is invasive, time-consuming, and may not fully represent tumor heterogeneity. This study proposes a non-invasive approach using digital mammography images and deep learning algorithm for classifying breast cancer molecular subtypes. Four pretrained models, including two Convolutional Neural Networks (MobileNet_V3_Large and VGG-16) and two Vision Transformers (ViT_B_16 and ViT_Base_Patch16_Clip_224) were fine-tuned to classify images into HER2-enriched, Luminal, Normal-like, and Triple Negative subtypes. Hyperparameter tuning,… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Based on Symbolic Execution and Graph Neural Networks

    Haoxin Sun1, Xiao Yu1,*, Jiale Li1, Yitong Xu1, Jie Yu1, Huanhuan Li1, Yuanzhang Li2, Yu-An Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070930 - 09 December 2025

    Abstract Since the advent of smart contracts, security vulnerabilities have remained a persistent challenge, compromsing both the reliability of contract execution and the overall stability of the virtual currency market. Consequently, the academic community has devoted increasing attention to these security risks. However, conventional approaches to vulnerability detection frequently exhibit limited accuracy. To address this limitation, the present study introduces a novel vulnerability detection framework called GNNSE that integrates symbolic execution with graph neural networks (GNNs). The proposed method first constructs semantic graphs to comprehensively capture the control flow and data flow dependencies within smart contracts. More >

  • Open Access

    ARTICLE

    FeatherGuard: A Data-Driven Lightweight Error Protection Scheme for DNN Inference on Edge Devices

    Dong Hyun Lee1, Na Kyung Lee2, Young Seo Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069976 - 09 December 2025

    Abstract There has been an increasing emphasis on performing deep neural network (DNN) inference locally on edge devices due to challenges such as network congestion and security concerns. However, as DRAM process technology continues to scale down, the bit-flip errors in the memory of edge devices become more frequent, thereby leading to substantial DNN inference accuracy loss. Though several techniques have been proposed to alleviate the accuracy loss in edge environments, they require complex computations and additional parity bits for error correction, thus resulting in significant performance and storage overheads. In this paper, we propose FeatherGuard,… More >

  • Open Access

    ARTICLE

    Artificial Neural Network Model for Thermal Conductivity Estimation of Metal Oxide Water-Based Nanofluids

    Nikhil S. Mane1, Sheetal Kumar Dewangan2,*, Sayantan Mukherjee3, Pradnyavati Mane4, Deepak Kumar Singh1, Ravindra Singh Saluja5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.072090 - 10 November 2025

    Abstract The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids. Researchers rely on experimental investigations to explore nanofluid properties, as it is a necessary step before their practical application. As these investigations are time and resource-consuming undertakings, an effective prediction model can significantly improve the efficiency of research operations. In this work, an Artificial Neural Network (ANN) model is developed to predict the thermal conductivity of metal oxide water-based nanofluid. For this, a comprehensive set of 691 data points was collected from the literature. This dataset is split More >

  • Open Access

    ARTICLE

    A Novel Unsupervised Structural Attack and Defense for Graph Classification

    Yadong Wang1, Zhiwei Zhang1,*, Pengpeng Qiao2, Ye Yuan1, Guoren Wang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068590 - 10 November 2025

    Abstract Graph Neural Networks (GNNs) have proven highly effective for graph classification across diverse fields such as social networks, bioinformatics, and finance, due to their capability to learn complex graph structures. However, despite their success, GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy. Existing adversarial attack strategies primarily rely on label information to guide the attacks, which limits their applicability in scenarios where such information is scarce or unavailable. This paper introduces an innovative unsupervised attack method for graph classification, which operates without relying on label information, thereby enhancing its applicability… More >

  • Open Access

    ARTICLE

    A Prediction Method for Concrete Mixing Temperature Based on the Fusion of Physical Models and Neural Networks

    Lei Zheng1,*, Hong Pan2,3, Yuelei Ruan2,4, Guoxin Zhang1, Lei Zhang1,*, Jianda Xin1, Zhenyang Zhu1, Jianyao Zhang2,5, Wei Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3217-3241, 2025, DOI:10.32604/cmes.2025.074651 - 23 December 2025

    Abstract As a critical material in construction engineering, concrete requires accurate prediction of its outlet temperature to ensure structural quality and enhance construction efficiency. This study proposes a novel hybrid prediction method that integrates a heat conduction physical model with a multilayer perceptron (MLP) neural network, dynamically fused via a weighted strategy to achieve high-precision temperature estimation. Experimental results on an independent test set demonstrated the superior performance of the fused model, with a root mean square error (RMSE) of 1.59°C and a mean absolute error (MAE) of 1.23°C, representing a 25.3% RMSE reduction compared to More >

Displaying 1-10 on page 1 of 481. Per Page