Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    VIEWPOINT

    Possible mechanisms of bidirectional nuclear transport during neuronal migration

    CHUYING ZHOU1, MINEKO KENGAKU1,2,*

    BIOCELL, Vol.46, No.11, pp. 2357-2361, 2022, DOI:10.32604/biocell.2022.021050 - 07 July 2022

    Abstract Neuronal migration is a fundamental process of mammalian brain development. In migrating neurons, the nuclear membrane protein Nesprin-2 has been shown to serve as an adaptor to pull the nucleus along microtubule tracks. Current evidence has shown that Nesprin-2 binds to both the minus-end-directed motor dynein as well as the plus-end-directed motor kinesin. However, translocation of neuronal nucleus has long been thought to be primarily driven by dynein motors. Intriguing questions could be raised about the role of kinesin in nuclear transport and how the activities of opposing motors are coordinated through interactions with Nesprin. More >

Displaying 1-10 on page 1 of 1. Per Page