Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    RWNeRF: Robust Watermarking Scheme for Neural Radiance Fields Based on Invertible Neural Networks

    Wenquan Sun1,2, Jia Liu1,2,*, Weina Dong1,2, Lifeng Chen1,2, Fuqiang Di1,2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4065-4083, 2024, DOI:10.32604/cmc.2024.053115 - 12 September 2024

    Abstract As neural radiance fields continue to advance in 3D content representation, the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing. In response to this challenge, this paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural network watermarking. Leveraging 2D image watermarking technology for 3D scene protection, the scheme embeds watermarks within the training images of neural radiance fields through the forward process in invertible neural networks and extracts them from… More >

  • Open Access

    ARTICLE

    Scene 3-D Reconstruction System in Scattering Medium

    Zhuoyifan Zhang1, Lu Zhang2, Liang Wang3, Haoming Wu2,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3405-3420, 2024, DOI:10.32604/cmc.2024.052144 - 15 August 2024

    Abstract Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions. The NeRF (Neural Radiance Fields) algorithm, suitable for underwater scenes or scattering media, is also evolving. Existing underwater 3D reconstruction systems still face challenges such as long training times and low rendering efficiency. This paper proposes an improved underwater 3D reconstruction system to achieve rapid and high-quality 3D reconstruction. First, we enhance underwater videos captured by a monocular camera to correct the image quality degradation caused by the physical properties of the water medium… More >

  • Open Access

    ARTICLE

    MarkNeRF: Watermarking for Neural Radiance Field

    Lifeng Chen1,2, Jia Liu1,2,*, Wenquan Sun1,2, Weina Dong1,2, Xiaozhong Pan1,2

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1235-1250, 2024, DOI:10.32604/cmc.2024.051608 - 18 July 2024

    Abstract This paper presents a novel watermarking scheme designed to address the copyright protection challenges encountered with Neural radiation field (NeRF) models. We employ an embedding network to integrate the watermark into the images within the training set. Then, the NeRF model is utilized for 3D modeling. For copyright verification, a secret image is generated by inputting a confidential viewpoint into NeRF. On this basis, design an extraction network to extract embedded watermark images from confidential viewpoints. In the event of suspicion regarding the unauthorized usage of NeRF in a black-box scenario, the verifier can extract More >

  • Open Access

    ARTICLE

    Dephosphorylated mutations affect the protein-protein interactions of ERF in Populus simonii x P. nigra

    Yao SUN, Yao LI, Xin SUN, Qiong WU, Lei WANG*

    BIOCELL, Vol.44, No.1, pp. 117-126, 2020, DOI:10.32604/biocell.2020.08242 - 01 March 2020

    Abstract Phosphorylation is a common type of post-translational modification (PTM). It plays a vital role in many cellular processes. The reversible phosphorylation and dephosphorylation affect protein structures and proteinprotein interactions. Previously, we obtained five proteins that interact with ethylene-responsive factor (ERF) from the cDNA library of Populus simonii x Populus nigra. To further investigate the effect of dephosphorylation of PsnERF on its protein binding ability, we generated different phosphorylation states of PsnERF and demonstrated their protein binding capacity by the yeast two-hybrid assay (Y2H). The secondary structures and 3D structures of PsnERF, ERFm, TrunERF, and psnerf197/198/202a were predicted More >

Displaying 1-10 on page 1 of 4. Per Page