Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (121)
  • Open Access

    ARTICLE

    Unsteady Flow of Hybrid Nanofluid with Magnetohydrodynamics- Radiation-Natural Convection Effects in a U-Shaped Wavy Porous Cavity

    Taher Armaghani1, Lioua Kolsi2, Najiyah Safwa Khashi’ie3,*, Ahmed Muhammed Rashad4, Muhammed Ahmed Mansour5, Taha Salah6, Aboulbaba Eladeb7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2225-2251, 2024, DOI:10.32604/cmes.2024.056676 - 31 October 2024

    Abstract In this paper, the unsteady magnetohydrodynamic (MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated. This problem has relevant applications in optimizing thermal management systems in electronic devices, solar energy collectors, and other industrial applications where efficient heat transfer is very important. The study is based on the application of a numerical approach using the Finite Difference Method (FDM) for the resolution of the governing equations, which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media. It was found that the increase of Hartmann number… More >

  • Open Access

    ARTICLE

    Impact of Viscous Dissipation and Ohmic Heating on Natural Convection Heat Transfer in Thermo-Magneto Generated Plume

    Sahar Anwar1, Ghulam Rasool2,*, Muhammad Ashraf1, Uzma Ahmad1, Tao Sun2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1323-1341, 2024, DOI:10.32604/fhmt.2024.055314 - 30 October 2024

    Abstract The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated by a line heat source under the impact of an aligned magnetic field. In this study, the flow model is adapted to incorporate ohmic heating and viscous dissipation by including the respective terms in the energy equation. A mathematical model is formulated as a system of coupled partial differential equations to analyze the flow problem. Subsequently, a numerical solution is derived with stream function formulation for the system of coupled partial differential equations, which transmutes it into ordinary… More > Graphic Abstract

    Impact of Viscous Dissipation and Ohmic Heating on Natural Convection Heat Transfer in Thermo-Magneto Generated Plume

  • Open Access

    ARTICLE

    Natural Convection of a Power-Law Nanofluid in a Square Cavity with a Vertical Fin

    Amira M’hadbi1,2,*, Mohammed El Ganaoui1, Haïkel Ben Hamed3, Amenallah Guizani2, Khalid Chtaibi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2091-2108, 2024, DOI:10.32604/fdmp.2024.050763 - 23 August 2024

    Abstract The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically. In particular, the impact of nanofluids, composed of water and Al₂O₃, TiO₂, and Cu nanoparticles, on heat transfer enhancement is examined. The aim of this research is also to analyze the influence of different parameters, including the Rayleigh number (Ra = 104 − 106), nanoparticle volume fraction (φ = 0% − 20%), non-Newtonian power-law indexes (n = 0.6 − 1.4), and fin dimensions (Ar = 0.3, 0.5, and 0.7). Streamlines and isotherms are used to… More > Graphic Abstract

    Natural Convection of a Power-Law Nanofluid in a Square Cavity with a Vertical Fin

  • Open Access

    ARTICLE

    Updated Lagrangian Particle Hydrodynamics (ULPH) Modeling of Natural Convection Problems

    Junsong Xiong1, Zhen Wang2, Shaofan Li3, Xin Lai1,*, Lisheng Liu2,*, Xiang Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 151-169, 2024, DOI:10.32604/cmes.2024.053078 - 20 August 2024

    Abstract Natural convection is a heat transfer mechanism driven by temperature or density differences, leading to fluid motion without external influence. It occurs in various natural and engineering phenomena, influencing heat transfer, climate, and fluid mixing in industrial processes. This work aims to use the Updated Lagrangian Particle Hydrodynamics (ULPH) theory to address natural convection problems. The Navier-Stokes equation is discretized using second-order nonlocal differential operators, allowing a direct solution of the Laplace operator for temperature in the energy equation. Various numerical simulations, including cases such as natural convection in square cavities and two concentric cylinders, More >

  • Open Access

    ARTICLE

    Energy Design and Optimization of Greenhouse by Natural Convection

    H. Benzzine, H. Labrim, Aouatif Saad*, Y. Achour, D. Zejli, R. El Bouayadi

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1903-1913, 2024, DOI:10.32604/fdmp.2024.050557 - 06 August 2024

    Abstract This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation. The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses. Employing advanced numerical simulation tools, the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions. The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling, providing valuable insights for greenhouse designers. Our findings shed light on the significant benefits of optimized ventilation and More > Graphic Abstract

    Energy Design and Optimization of Greenhouse by Natural Convection

  • Open Access

    ARTICLE

    Convection and Stratification of Temperature and Concentration

    Alexey Fedyushkin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1351-1364, 2024, DOI:10.32604/fdmp.2024.050267 - 27 June 2024

    Abstract This study is devoted to an analysis of natural convection and the emergence of delamination in an incompressible fluid encapsulated in a closed region heated from the side. Weak, medium and intensive modes of stationary laminar thermal and thermo-concentration convection are considered. It is shown that nonlinear flow features can radically change the flow structure and characteristics of heat and mass transfer. Moreover, the temperature and concentration segregation in the center of the square region display a non-monotonic dependence on the Grashof number (flow intensity). The formation of a nonstationary periodic structure of thermal convection More >

  • Open Access

    ARTICLE

    Steady Natural Convection from a Vertical Hot Plate with Variable Radiation

    Dewi Puspitasari1, Diah Kusuma Pratiwi1, Pramadhony Amran2, Kaprawi Sahim1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 305-315, 2024, DOI:10.32604/fhmt.2023.041882 - 21 March 2024

    Abstract The natural convection from a vertical hot plate with radiation and constant flux is studied numerically to know the velocity and temperature distribution characteristics over a vertical hot plate. The governing equations of the natural convection in two-dimension are solved with the implicit finite difference method, whereas the discretized equations are solved with the iterative relaxation method. The results show that the velocity and the temperature increase along the vertical wall. The influence of the radiation parameter in the boundary layer is significant in increasing the velocity and temperature profiles. The velocity profiles increase with More >

  • Open Access

    ARTICLE

    Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics (MHD) Filled in a Cavity with Y-Shape Heated Fin: FEM Computational Configuration

    Afraz Hussain Majeed1, Rashid Mahmood2, Sayed M. Eldin3, Imran Saddique4,5,*, S. Saleem6, Muhammad Jawad7

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1505-1519, 2024, DOI:10.32604/cmes.2023.030255 - 29 January 2024

    Abstract This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin and magnetic field. The temperature is constant on the Y-shaped fin, insulating the top wall while the remaining walls remain cold. All walls are subject to impermeability and non-slip conditions. The mathematical modeling of the problem is demonstrated by the continuity, momentum, and energy equations incorporating the inclined magnetic field. For elucidating the flow characteristics Finite Element Method (FEM) is implemented using stable FE pair. A hybrid fine mesh is used for discretizing the domain. Velocity and More >

  • Open Access

    ARTICLE

    Amplitude and Period Effect on Heat Transfer in an Enclosure with Sinusoidal Heating from Below Using Lattice Boltzmann Method

    Noureddine Abouricha1,*, Chouaib Ennawaoui1,2, Mustapha El Alami3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 523-537, 2023, DOI:10.32604/fhmt.2023.045914 - 30 November 2023

    Abstract This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method (LBM). We consider a square enclosure of side H filled with air (Pr = 0.71) and heated from below, with a hot portion of length L = 0.8 H, by imposing a sinusoidal temperature. The unheated segments of the bottom wall are treated as adiabatic, and one of the vertical walls features a cold region, while the remaining walls remain adiabatic. The outcomes of the two-dimensional (2D) problem are depicted through isotherms, streamlines, More >

  • Open Access

    ARTICLE

    Numerical Assessment of Nanofluid Natural Convection Using Local RBF Method Coupled with an Artificial Compressibility Model

    Muneerah Al Nuwairan1,*, Elmiloud Chaabelasri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 133-154, 2023, DOI:10.32604/cmes.2022.022649 - 29 September 2022

    Abstract In this paper, natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function (RBF). The nanofluids used were Cu-water or -water mixture with nanoparticle volume fractions range of . A system of continuity, momentum, and energy partial differential equations was used in modeling the flow and temperature behavior of the fluids. Partial derivatives in the governing equations were approximated using the RBF method. The artificial compressibility model was implemented to overcome the pressure velocity coupling problem that occurs in such equations. The main goal… More > Graphic Abstract

    Numerical Assessment of Nanofluid Natural Convection Using Local RBF Method Coupled with an Artificial Compressibility Model

Displaying 1-10 on page 1 of 121. Per Page