Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    PROCEEDINGS

    Unique Mechanism in Strength and Deformation of Natural Nano-Sized Fibers: Molecular Dynamics Study on Nanofibrils of Cellulose and Spider Silk

    Ken-ichi Saitoh1,*, Makoto Watanabe2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012624

    Abstract Natural nanofibers, e.g., cellulose nanofiber (CNF) of plant, collagen fibril in human body and fibroin fiber in spider silk, show interesting and distinctive atomistic mechanisms in deformation under mechanical loading as well as exhibition of extraordinary strength. These fibers are comprising more larger bulk and wire materials by constructing structural hierarchy. However, the initiation of unique behavior of these materials largely originates from atomic-scale and chemical energetics in loading. Besides, the experimental approach is often difficult and is too limited to reveal the basic mechanism. Therefore, it is crucial to clarify atomic behavior of these… More >

  • Open Access

    ARTICLE

    Unraveling the Rheology of Nanocellulose Aqueous Suspensions: A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose

    Mingyue Miao1,#, Fei Wang1,#, Qing Li1, Longchen Tao1, Chenchen Dai1, Yu Liu1, Shujuan Han1, Wenshuai Chen1,*, Ping Lu2,*

    Journal of Renewable Materials, Vol.12, No.3, pp. 443-455, 2024, DOI:10.32604/jrm.2023.030412 - 11 April 2024

    Abstract The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials. High-crystalline, high-aspect ratio, and slender nanofibrillated cellulose (NFC) were extracted from four biomass resources. The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions. The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli. As the concentration increased, the storage and loss modulus of NFC dispersion increased. When the shear rate increased to a certain value, there were differences in the changing trend of the rheological behavior More > Graphic Abstract

    Unraveling the Rheology of Nanocellulose Aqueous Suspensions: A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose

  • Open Access

    PROCEEDINGS

    Characterization of Mechanical Properties of CNFs and the Assembled Microfibers Through a Multi-scale Optimization-Based Inversion Method

    Shuaijun Wang1, Wenqiong Tu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09926

    Abstract Cellulose nanofibrils (CNFs) and the continuously assembled microfibers have shown transversely isotropic behavior in many studies. Due to fact that the size of CNFs and the assembled microfibers is at the nano and micro scale, respectively, the characterization of their mechanical properties is extremely challenge. That greatly hinders the accurate multi-scale modeling and design of CNFs-based materials. In our study, we have characterized the elastic constants of both CNFs microfibers and CNFs through a Multi-scale Optimization Inversion technology. Through the tensile test of CNFs microfibers reinforced resin with different volume fractions and the micromechanics model More >

  • Open Access

    ARTICLE

    Lignocellulosic Micro and Nanofibrillated Cellulose Produced by Steam Explosion for Wood Adhesive Formulations

    Saad Nader1,2, Felipe Guzman3, Raphael Becar1, César Segovia4, Cecilia Fuentealba3, Miguel Peirera3, Evelyne Mauret2, Nicolas Brosse1,*

    Journal of Renewable Materials, Vol.10, No.2, pp. 263-271, 2022, DOI:10.32604/jrm.2022.017923 - 30 August 2021

    Abstract The reinforcing impact of Lignocellulosic micro and nanofibrillated cellulose (L-MNFCs) obtained from Eucalyptus Globulus bark in Urea-Formaldehyde UF adhesive was tested. L-MNFCs were prepared by an environmentally friendly, low-cost process using a combination process involving steam explosion followed by refining and ultra-fine grinding. Obtained L-MNFCs showed a web-like morphology with some aggregates and lignin nanodroplets. They present a mixture of residual fibers and fine elements with a width varying between 5 nm to 20 μm, respectively. The effects of the addition of low amounts of L-MNFCs (1% wt.) on the properties of three different adhesives (Urea-Formaldehyde UF, Phenol-Formaldehyde More > Graphic Abstract

    Lignocellulosic Micro and Nanofibrillated Cellulose Produced by Steam Explosion for Wood Adhesive Formulations

  • Open Access

    ARTICLE

    Nanofibrillation of Bacterial Cellulose Using High-Pressure Homogenization and Its Films Characteristics

    Heru Suryanto1,2,*, Muhamad Muhajir1, Bili Darnanto Susilo1, Yanuar Rohmat Aji Pradana1, Husni Wahyu Wijaya2,3, Abu Saad Ansari4, Uun Yanuhar5

    Journal of Renewable Materials, Vol.9, No.10, pp. 1717-1728, 2021, DOI:10.32604/jrm.2021.015312 - 12 May 2021

    Abstract The microstructure of bacterial cellulose nanofibers (BCNs) film affects its characteristic. One of several means to engineer the microstructure is by changing the BCNs size and fiber distribution through a high-pressure homogenizer (HPH) process. This research aimed to find out the effects of repetition cycles on HPH process towards BCNs film characteristics. To prepare BCNs films, a pellicle from the fermentation of pineapple peels waste with Acetobacter xylinum (A. xylinum) was extracted, followed by crushing the pellicle with a high-speed blender, thereafter, homogenized using HPH at 150 bar pressure with variations of 5, 10, 15, and 20… More >

  • Open Access

    ARTICLE

    Flexible Nanopaper Composed of Wood-Derived Nanofibrillated Cellulose and Graphene Building Blocks

    Qing Li1, Ming Dai1, Xueren Qian1, Tian Liu1, Zhenbo Liu1, Yu Liu1, Ming Chen1, Wang He1, Suqing Zeng1, Yu Meng1, Chenchen Dai1, Jing Shen1, Yingtao Liu1, Wenshuai Chen1, Wenbo Liu1,*, Ping Lu2,*

    Journal of Renewable Materials, Vol.9, No.3, pp. 451-461, 2021, DOI:10.32604/jrm.2021.011655 - 14 January 2021

    Abstract Nanopaper has attracted considerable interest in the fields of films and paper research. However, the challenge of integrating the many advantages of nanopaper still remains. Herein, we developed a facile strategy to fabricate multifunctional nanocomposite paper (NGCP) composed of wood-derived nanofibrillated cellulose (NFC) and graphene as building blocks. NFC suspension was consisted of long and entangled NFCs (10–30 nm in width) and their aggregates. Before NGCP formation, NFC was chemically modified with a silane coupling agent to ensure that it could interact strongly with graphene in NGCP. The resulting NGCP samples were flexible and could… More >

  • Open Access

    ARTICLE

    Preparation of Cellulose Nanofibrils by Multi-Site Regioselective Oxidation

    Liying Song1, Xixiang Pei2, Rui Li1, Haitao Chen1,*, Xiaozheng Sun1,*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1269-1282, 2020, DOI:10.32604/jrm.2020.010923 - 31 August 2020

    Abstract Cellulose nanofibrils (CNFs) are promising sustainable materials that can be applied to nanocomposites, as well as medical and life-sciences devices. However, methods for the preparation of these important materials are energy intensive because heating and mechanical disintegration are required to produce cellulose fibers below 100 nm in size. In this study, CNFs were prepared through the multi-site regioselective oxidation of cellulose with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and periodate at room temperature (20–25°C), without any mechanical-disintegration treatment. Transmission electron microscopy (TEM) revealed that the CNFs had the average widths of 14.1, 55.4, and 81.9 nm for three different… More >

  • Open Access

    ARTICLE

    3D-Printed PLA Filaments Reinforced with Nanofibrillated Cellulose

    Matea Perić1,*, Robert Putz1, Christian Paulik2

    Journal of Renewable Materials, Vol.8, No.7, pp. 759-772, 2020, DOI:10.32604/jrm.2020.09284 - 01 June 2020

    Abstract In the current study poly(lactic acid) PLA composites with a 3 wt% and 5 wt% of nanofibrillated cellulose (NFC) were produced by 3D-printing method. An enzymatic pretreatment coupled with mechanical fibrillation in a twin screw extruder was used to produce high consistency NFC. Scanning electron microscopy (SEM) equipped with Fibermetric software, FASEP fiber length distribution analysis, Furrier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile tests, impact tests and differential scanning calorimetry were used to characterize NFC and PLA/NFC composites. The results of the fiber length and width measurements together with the results of the… More >

  • Open Access

    ARTICLE

    Water-Based Processing of Fiberboard of Acrylic Resin Composites Reinforced With Cellulose Wood Pulp and Cellulose Nanofibrils

    Emanoele Maria Santos Chiromito1, Eliane Trovatti2, Antonio Jose Felix Carvalho1,*

    Journal of Renewable Materials, Vol.7, No.5, pp. 403-413, 2019, DOI:10.32604/jrm.2019.01846

    Abstract Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics, its use is limited due to its tendency to form agglomerates and due to its high hydrophilic character. Here we describe fiberboard composites with high contents of wood pulp or cellulose nanofibrils, and a resin of poly (styrene-methyl-methacrylate-acrylic acid) used as water-based emulsion. Cellulose wood pulp and cellulose nanofibrils were used directly in the form of water suspensions. The method is based on the flocculation of the polymer emulsion followed by agglomeration of a mixture of the polymer emulsion… More >

  • Open Access

    ARTICLE

    Structure-Thermal Conductivity Tentative Correlation for Hybrid Aerogels Based on Nanofibrillated Cellulose-Mesoporous Silica Nanocomposite

    Dounia Bendahou1,2, Abdelkader Bendahou1, Bastien Seantier1, Bénédicte Lebeau3, Yves Grohens1,*, Hamid Kaddami2,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 299-313, 2018, DOI:10.7569/JRM.2017.634185

    Abstract Hybrid aerogels have been prepared by freeze-drying technique after mixing water dispersions of cellulose microfibers or cellulose nanofibers and silica (SiO2) of type SBA-15 (2D-hexagonal). The prepared composites were characterized by different analysis techniques such as SEM, hot-filament, DMA, etc. These composites are compared to those previously prepared using nanozeolites (NZs) as mineral charge. The morphology studied by SEM indicated that both systems have different structures, i.e., individual fibers for cellulose microfibers WP-based aerogels and films for nanofibrillated cellulose NFC-based ones.... These differences seem to be driven by the charge of the particles, their aspect More >

Displaying 1-10 on page 1 of 15. Per Page