Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    An Analytical Approach for Simulating the Bending of Nanobeams in Thermal Environments Considering the Flexomagnetic Effect

    Do Van Thom1,*, Pham Van Hoan2, Nguyen Huu Phan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1711-1734, 2025, DOI:10.32604/cmes.2025.071187 - 26 November 2025

    Abstract This research utilizes analytical solutions to investigate the issue of nonlinear static bending in nanobeams affected by the flexomagnetic effect. The nanobeams are exposed to mechanical loads and put in a temperature environment. The equilibrium equation of the beam is formulated based on the newly developed higher-order shear deformation theory. The flexomagnetic effect is explained by the presence of the strain gradient component, which also takes into consideration the impact of small-size effects. This study has used a flexible transformation to derive the equilibrium equation for a single variable, which significantly simplifies the process of More >

  • Open Access

    ARTICLE

    In-Plane Static Analysis of Curved Nanobeams Using Exact-Solution-Based Finite Element Formulation

    Ömer Ekim Genel*, Hilal Koç, Ekrem Tüfekci

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2043-2059, 2025, DOI:10.32604/cmc.2025.060111 - 17 February 2025

    Abstract Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that… More >

  • Open Access

    ARTICLE

    A Simplified Model for Buckling and Post-Buckling Analysis of Cu Nanobeam Under Compression

    Jiachen Guo1,2, Yunfei Xu2, Zhenyu Jiang1,*, Xiaoyi Liu2, Yang Cai2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 611-623, 2020, DOI:10.32604/cmes.2020.011148 - 12 October 2020

    Abstract Both of Buckling and post-buckling are fundamental problems of geometric nonlinearity in solid mechanics. With the rapid development of nanotechnology in recent years, buckling behaviors in nanobeams receive more attention due to its applications in sensors, actuators, transistors, probes, and resonators in nanoelectromechanical systems (NEMS) and biotechnology. In this work, buckling and post-buckling of copper nanobeam under uniaxial compression are investigated with theoretical analysis and atomistic simulations. Different cross sections are explored for the consideration of surface effects. To avoid complicated high order buckling modes, a stressbased simplified model is proposed to analyze the critical… More >

  • Open Access

    ARTICLE

    A Semi-analytical Method for Vibrational and Buckling Analysis of Functionally Graded Nanobeams Considering the Physical Neutral Axis Position

    Farzad Ebrahimi1,2, Erfan Salari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 151-181, 2015, DOI:10.3970/cmes.2015.105.151

    Abstract In this paper, a semi-analytical method is presented for free vibration and buckling analysis of functionally graded (FG) size-dependent nanobeams based on the physical neutral axis position. It is the first time that a semi-analytical differential transform method (DTM) solution is developed for the FG nanobeams vibration and buckling analysis. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form. The physical neutral axis position for mentioned FG nanobeams is determined. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The… More >

Displaying 1-10 on page 1 of 4. Per Page