Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Simplified Model for Buckling and Post-Buckling Analysis of Cu Nanobeam Under Compression

    Jiachen Guo1,2, Yunfei Xu2, Zhenyu Jiang1,*, Xiaoyi Liu2, Yang Cai2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 611-623, 2020, DOI:10.32604/cmes.2020.011148 - 12 October 2020

    Abstract Both of Buckling and post-buckling are fundamental problems of geometric nonlinearity in solid mechanics. With the rapid development of nanotechnology in recent years, buckling behaviors in nanobeams receive more attention due to its applications in sensors, actuators, transistors, probes, and resonators in nanoelectromechanical systems (NEMS) and biotechnology. In this work, buckling and post-buckling of copper nanobeam under uniaxial compression are investigated with theoretical analysis and atomistic simulations. Different cross sections are explored for the consideration of surface effects. To avoid complicated high order buckling modes, a stressbased simplified model is proposed to analyze the critical… More >

  • Open Access

    ARTICLE

    A Semi-analytical Method for Vibrational and Buckling Analysis of Functionally Graded Nanobeams Considering the Physical Neutral Axis Position

    Farzad Ebrahimi1,2, Erfan Salari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 151-181, 2015, DOI:10.3970/cmes.2015.105.151

    Abstract In this paper, a semi-analytical method is presented for free vibration and buckling analysis of functionally graded (FG) size-dependent nanobeams based on the physical neutral axis position. It is the first time that a semi-analytical differential transform method (DTM) solution is developed for the FG nanobeams vibration and buckling analysis. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form. The physical neutral axis position for mentioned FG nanobeams is determined. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The… More >

Displaying 1-10 on page 1 of 2. Per Page