Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (252)
  • Open Access

    ARTICLE

    Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection

    Mohammad Al-Omari1, Qasem Abu Al-Haija2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1537-1555, 2024, DOI:10.32604/csse.2024.056257 - 22 November 2024

    Abstract More businesses are deploying powerful Intrusion Detection Systems (IDS) to secure their data and physical assets. Improved cyber-attack detection and prevention in these systems requires machine learning (ML) approaches. This paper examines a cyber-attack prediction system combining feature selection (FS) and ML. Our technique’s foundation was based on Correlation Analysis (CA), Mutual Information (MI), and recursive feature reduction with cross-validation. To optimize the IDS performance, the security features must be carefully selected from multiple-dimensional datasets, and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets. More >

  • Open Access

    REVIEW

    A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions

    Monirah Al-Ajlan*, Mourad Ykhlef

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2053-2076, 2024, DOI:10.32604/cmc.2024.055891 - 18 November 2024

    Abstract The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems (IDSs). IDSs have become a research hotspot and have seen remarkable performance improvements. Generative adversarial networks (GANs) have also garnered increasing research interest recently due to their remarkable ability to generate data. This paper investigates the application of (GANs) in (IDS) and explores their current use within this research field. We delve into the adoption of GANs within signature-based, anomaly-based, and hybrid IDSs, focusing on their objectives, methodologies, and advantages. Overall, GANs have been widely employed, mainly focused on solving the More >

  • Open Access

    ARTICLE

    Augmenting Internet of Medical Things Security: Deep Ensemble Integration and Methodological Fusion

    Hamad Naeem1, Amjad Alsirhani2,*, Faeiz M. Alserhani3, Farhan Ullah4, Ondrej Krejcar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2185-2223, 2024, DOI:10.32604/cmes.2024.056308 - 31 October 2024

    Abstract When it comes to smart healthcare business systems, network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults. To protect IoMT devices and networks in healthcare and medical settings, our proposed model serves as a powerful tool for monitoring IoMT networks. This study presents a robust methodology for intrusion detection in Internet of Medical Things (IoMT) environments, integrating data augmentation, feature selection, and ensemble learning to effectively handle IoMT data complexity. Following rigorous preprocessing, including feature extraction, correlation removal, and Recursive Feature Elimination (RFE), selected features are standardized… More >

  • Open Access

    ARTICLE

    Distributed Federated Split Learning Based Intrusion Detection System

    Rasha Almarshdi1,2,*, Etimad Fadel1, Nahed Alowidi1, Laila Nassef1

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 949-983, 2024, DOI:10.32604/iasc.2024.056792 - 31 October 2024

    Abstract The Internet of Medical Things (IoMT) is one of the critical emerging applications of the Internet of Things (IoT). The huge increases in data generation and transmission across distributed networks make security one of the most important challenges facing IoMT networks. Distributed Denial of Service (DDoS) attacks impact the availability of services of legitimate users. Intrusion Detection Systems (IDSs) that are based on Centralized Learning (CL) suffer from high training time and communication overhead. IDS that are based on distributed learning, such as Federated Learning (FL) or Split Learning (SL), are recently used for intrusion… More >

  • Open Access

    ARTICLE

    APSO-CNN-SE: An Adaptive Convolutional Neural Network Approach for IoT Intrusion Detection

    Yunfei Ban, Damin Zhang*, Qing He, Qianwen Shen

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 567-601, 2024, DOI:10.32604/cmc.2024.055007 - 15 October 2024

    Abstract The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things (IoT) networks. The proliferation of unknown attacks and related risks, such as zero-day attacks and Distributed Denial of Service (DDoS) attacks triggered by botnets, have resulted in information leakage and property damage. Therefore, developing an efficient and realistic intrusion detection system (IDS) is critical for ensuring IoT network security. In recent years, traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic, and the excellent performance of deep learning techniques,… More >

  • Open Access

    ARTICLE

    A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection

    Chandraumakantham Om Kumar1,*, Sudhakaran Gajendran2, Suguna Marappan1, Mohammed Zakariah3, Abdulaziz S. Almazyad4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 471-501, 2024, DOI:10.32604/cmc.2024.054966 - 15 October 2024

    Abstract The security of the wireless sensor network-Internet of Things (WSN-IoT) network is more challenging due to its randomness and self-organized nature. Intrusion detection is one of the key methodologies utilized to ensure the security of the network. Conventional intrusion detection mechanisms have issues such as higher misclassification rates, increased model complexity, insignificant feature extraction, increased training time, increased run time complexity, computation overhead, failure to identify new attacks, increased energy consumption, and a variety of other factors that limit the performance of the intrusion system model. In this research a security framework for WSN-IoT, through… More >

  • Open Access

    ARTICLE

    Cyber Security within Smart Cities: A Comprehensive Study and a Novel Intrusion Detection-Based Approach

    Mehdi Houichi1,*, Faouzi Jaidi1,2, Adel Bouhoula3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 393-441, 2024, DOI:10.32604/cmc.2024.054007 - 15 October 2024

    Abstract The expansion of smart cities, facilitated by digital communications, has resulted in an enhancement of the quality of life and satisfaction among residents. The Internet of Things (IoT) continually generates vast amounts of data, which is subsequently analyzed to offer services to residents. The growth and development of IoT have given rise to a new paradigm. A smart city possesses the ability to consistently monitor and utilize the physical environment, providing intelligent services such as energy, transportation, healthcare, and entertainment for both residents and visitors. Research on the security and privacy of smart cities is… More >

  • Open Access

    REVIEW

    Enhancing Internet of Things Intrusion Detection Using Artificial Intelligence

    Shachar Bar1, P. W. C. Prasad2, Md Shohel Sayeed3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1-23, 2024, DOI:10.32604/cmc.2024.053861 - 15 October 2024

    Abstract Escalating cyber security threats and the increased use of Internet of Things (IoT) devices require utilisation of the latest technologies available to supply adequate protection. The aim of Intrusion Detection Systems (IDS) is to prevent malicious attacks that corrupt operations and interrupt data flow, which might have significant impact on critical industries and infrastructure. This research examines existing IDS, based on Artificial Intelligence (AI) for IoT devices, methods, and techniques. The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy, precision, recall and F1-score; this research also… More >

  • Open Access

    ARTICLE

    GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification

    Mohammad Shoab*, Loiy Alsbatin*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.053721 - 15 October 2024

    Abstract In recent years, machine learning (ML) and deep learning (DL) have significantly advanced intrusion detection systems, effectively addressing potential malicious attacks across networks. This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things (IoT) environment, leveraging the NSL-KDD dataset. To achieve high accuracy, the authors used the feature extraction technique in combination with an auto-encoder, integrated with a gated recurrent unit (GRU). Therefore, the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization (PSO), and PSO has been employed for training the features. The More >

  • Open Access

    ARTICLE

    A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties

    Rajan Aravind1,2, Sundararajan Natarajan1, Krishnankutty Jayakumar2, Ratna Kumar Annabattula1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 997-1032, 2024, DOI:10.32604/cmes.2024.053047 - 27 September 2024

    Abstract Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications. This is all the more important when elements composed of brittle materials are exposed to dynamic environments, resulting in catastrophic fatigue failures. The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables. Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the… More >

Displaying 1-10 on page 1 of 252. Per Page