Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    Multi-Purpose Forensics of Image Manipulations Using Residual- Based Feature

    Anjie Peng1, Kang Deng1, Shenghai Luo1, Hui Zeng1, 2, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2217-2231, 2020, DOI:10.32604/cmc.2020.011006

    Abstract The multi-purpose forensics is an important tool for forge image detection. In this paper, we propose a universal feature set for the multi-purpose forensics which is capable of simultaneously identifying several typical image manipulations, including spatial low-pass Gaussian blurring, median filtering, re-sampling, and JPEG compression. To eliminate the influences caused by diverse image contents on the effectiveness and robustness of the feature, a residual group which contains several highpass filtered residuals is introduced. The partial correlation coefficient is exploited from the residual group to purely measure neighborhood correlations in a linear way. Besides that, we also combine autoregressive coefficient and… More >

  • Open Access

    ARTICLE

    Kinematic Calibration of a Parallel Manipulator for a Semi-physical Simulation System

    Dayong Yu

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 571-580, 2018, DOI:10.31209/2018.100000024

    Abstract In the application of a semi-physical simulation system of a space docking mechanism, the simulation precision is determined by pose accuracy of the parallel manipulator. In order to improve pose accuracy, an effective kinematic calibration method is presented to enable the full set of kinematic parameter errors to be estimated by measuring the docking mechanism’s poses. A new calibration model that takes into account geometrical parameter errors and coordinates transformation errors is derived by using a differential geometry method. Based on the calibration model, an iterative least square algorithm is utilized to calculate the above errors. Simulation and experimental results… More >

  • Open Access

    ARTICLE

    Sliding-Mode PID Control of UAV Based on Particle Swarm Parameter Tuning

    Yunping Liu1, 2, *, Xingxing Yan1, Fei Yan1, Ze Xu1, Weiyan Shang3

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 469-487, 2020, DOI:10.32604/cmc.2020.05746

    Abstract Due to the coupled motion between the rotor unmanned aerial vehicle (UAV) and the manipulator, the underactuation characteristics of the system itself, and the influence of external uncertainties, the stability of the rotor UAV’s manipulator control system is difficult to control. Based on the dynamic model of the rotor UAV, the stability of the whole UAV manipulator control system is improved by using the piecewise cost function, the compression factor particle swarm optimization (PSO) algorithm and the sliding mode PID to establish the sliding mode PID control stability method based on the PSO. Compared with the sliding mode PID control… More >

  • Open Access

    ARTICLE

    Synchronization of Robot Manipulators Actuated By Induction Motors with Velocity Estimator

    Felipe J. Torres1,*, Gerardo V. Guerrero2, Carlos D. García2, Ricardo Zavala-Yoe3, Mario A. García1, Adolfo R. López4

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 609-630, 2019, DOI:10.32604/cmes.2019.07153

    Abstract A complete modeling (including the actuator dynamics) of a robot manipulator that uses three-phase induction motors is presented in this paper. A control scheme is designed to synchronize robot manipulators actuated by induction motors under a masterslave scheme in the case where the joint velocity of the slave robots is estimated. All of the research on the synchronization of robot manipulators assumes the use of ideal actuators to drive the joints; for that reason, in this work, a three-phase induction motor is considered to be a direct-drive actuator for each joint. An entire model of the mated system is obtained… More >

  • Open Access

    REVIEW

    Tannin-Based Biofoams-A Review

    Antonio Pizzi*

    Journal of Renewable Materials, Vol.7, No.5, pp. 477-492, 2019, DOI:10.32604/jrm.2019.06511

    Abstract This review details the development of tannin-based biofoams for fire resistance and acoustic insulation and details the different varieties of these foams that have been developed, from tannin-furanic self-blowing foams to tannin-furanic polyurethanes and finally non-isocyanate tannin-based-carbohydrates polyurethanes (NIPU). More >

  • Open Access

    ARTICLE

    Glucose-Biobased Non-Isocyanate Polyurethane Rigid Foams

    Xuedong Xi1,2, A. Pizzi1,*, C. Gerardin3, Guanben Du2

    Journal of Renewable Materials, Vol.7, No.3, pp. 301-312, 2019, DOI:10.32604/jrm.2019.04174

    Abstract Glucose-based non-isocyanate polyurethanes (NIPU) were prepared by reaction of glucose with dimethyl carbonate and hexamethylene diamine. These were used to prepare partially biobased polyurethane foams by reaction with NaHCO3 as a blowing agent and addition of a silane coupling agent having different functions such as coreactant and adjuvant to obtain more uniform and smaller cells. The foams were foamed and hardened by applying heat. The foams presented very limited fire resistance indicating that as for synthetic polyurethane foams the eventual use of a fire retardant appears to be necessary. The 2 hours water absorption was used to indicate if close… More >

Displaying 31-40 on page 4 of 36. Per Page