Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series

    Byeongcheon Lee1, Sangmin Kim1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho1,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1275-1300, 2024, DOI:10.32604/cmc.2024.054826 - 15 October 2024

    Abstract In the context of rapid digitization in industrial environments, how effective are advanced unsupervised learning models, particularly hybrid autoencoder models, at detecting anomalies in industrial control system (ICS) datasets? This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things (IoT) devices, which can significantly improve the reliability and safety of these systems. In this paper, we propose a hybrid autoencoder model, called ConvBiLSTM-AE, which combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) to More >

  • Open Access

    ARTICLE

    Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things

    Mengmeng Zhao1,2,3, Haipeng Peng1,2,*, Lixiang Li1,2, Yeqing Ren1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2815-2837, 2024, DOI:10.32604/cmc.2024.053765 - 15 August 2024

    Abstract In the Industrial Internet of Things (IIoT), sensors generate time series data to reflect the working state. When the systems are attacked, timely identification of outliers in time series is critical to ensure security. Although many anomaly detection methods have been proposed, the temporal correlation of the time series over the same sensor and the state (spatial) correlation between different sensors are rarely considered simultaneously in these methods. Owing to the superior capability of Transformer in learning time series features. This paper proposes a time series anomaly detection method based on a spatial-temporal network and… More >

  • Open Access

    ARTICLE

    A Novel Graph Structure Learning Based Semi-Supervised Framework for Anomaly Identification in Fluctuating IoT Environment

    Weijian Song1,, Xi Li1,, Peng Chen1,*, Juan Chen1, Jianhua Ren2, Yunni Xia3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3001-3016, 2024, DOI:10.32604/cmes.2024.048563 - 08 July 2024

    Abstract With the rapid development of Internet of Things (IoT) technology, IoT systems have been widely applied in healthcare, transportation, home, and other fields. However, with the continuous expansion of the scale and increasing complexity of IoT systems, the stability and security issues of IoT systems have become increasingly prominent. Thus, it is crucial to detect anomalies in the collected IoT time series from various sensors. Recently, deep learning models have been leveraged for IoT anomaly detection. However, owing to the challenges associated with data labeling, most IoT anomaly detection methods resort to unsupervised learning techniques.… More >

  • Open Access

    ARTICLE

    A Memory-Guided Anomaly Detection Model with Contrastive Learning for Multivariate Time Series

    Wei Zhang1, Ping He2,*, Ting Li2, Fan Yang1, Ying Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1893-1910, 2023, DOI:10.32604/cmc.2023.044253 - 29 November 2023

    Abstract Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification. These limitations can result in the misjudgment of models, leading to a degradation in overall detection performance. This paper proposes a novel transformer-like anomaly detection model adopting a contrastive learning module and a memory block (CLME) to overcome the above limitations. The contrastive learning module tailored for time series data can learn the contextual relationships to generate temporal fine-grained representations. The memory block can record normal patterns of these… More >

  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection Approach Based on Adversarial Memory Autoencoders for Multivariate Time Series

    Tianzi Zhao1,2,3,4, Liang Jin1,2,3,*, Xiaofeng Zhou1,2,3, Shuai Li1,2,3, Shurui Liu1,2,3,4, Jiang Zhu1,2,3

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 329-346, 2023, DOI:10.32604/cmc.2023.038595 - 08 June 2023

    Abstract The widespread usage of Cyber Physical Systems (CPSs) generates a vast volume of time series data, and precisely determining anomalies in the data is critical for practical production. Autoencoder is the mainstream method for time series anomaly detection, and the anomaly is judged by reconstruction error. However, due to the strong generalization ability of neural networks, some abnormal samples close to normal samples may be judged as normal, which fails to detect the abnormality. In addition, the dataset rarely provides sufficient anomaly labels. This research proposes an unsupervised anomaly detection approach based on adversarial memory… More >

  • Open Access

    ARTICLE

    Fine-Grained Multivariate Time Series Anomaly Detection in IoT

    Shiming He1,4, Meng Guo1, Bo Yang1, Osama Alfarraj2, Amr Tolba2, Pradip Kumar Sharma3, Xi’ai Yan4,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5027-5047, 2023, DOI:10.32604/cmc.2023.038551 - 29 April 2023

    Abstract Sensors produce a large amount of multivariate time series data to record the states of Internet of Things (IoT) systems. Multivariate time series timestamp anomaly detection (TSAD) can identify timestamps of attacks and malfunctions. However, it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis, a process referred to as fine-grained anomaly detection (FGAD). Although further FGAD can be extended based on TSAD methods, existing works do not provide a quantitative evaluation, and the performance is unknown. Therefore, to tackle the FGAD problem, this paper first verifies that… More >

  • Open Access

    ARTICLE

    Dynamic Ensemble Multivariate Time Series Forecasting Model for PM2.5

    Narendran Sobanapuram Muruganandam, Umamakeswari Arumugam*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 979-989, 2023, DOI:10.32604/csse.2023.024943 - 15 June 2022

    Abstract In forecasting real time environmental factors, large data is needed to analyse the pattern behind the data values. Air pollution is a major threat towards developing countries and it is proliferating every year. Many methods in time series prediction and deep learning models to estimate the severity of air pollution. Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality. This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter (PM) PM2.5. To perform experimental analysis the… More >

  • Open Access

    ARTICLE

    A Hybrid Neural Network-based Approach for Forecasting Water Demand

    Al-Batool Al-Ghamdi1,*, Souad Kamel2, Mashael Khayyat3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1365-1383, 2022, DOI:10.32604/cmc.2022.026246 - 18 May 2022

    Abstract Water is a vital resource. It supports a multitude of industries, civilizations, and agriculture. However, climatic conditions impact water availability, particularly in desert areas where the temperature is high, and rain is scarce. Therefore, it is crucial to forecast water demand to provide it to sectors either on regular or emergency days. The study aims to develop an accurate model to forecast daily water demand under the impact of climatic conditions. This forecasting is known as a multivariate time series because it uses both the historical data of water demand and climatic conditions to forecast… More >

Displaying 1-10 on page 1 of 8. Per Page